MRT 363 : OBJECT ORIENTED PROGRAMMING

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF MECHATRONICS ENGINEERING

COURSE MATERIALS

MRT 363 OBJECT ORIENTED PROGRAMMING

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in
Engineering and Frontier Technology and to impart quality education to mould technically
competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to
imbibe discipline, culture and spiritually, and to mould them in to technological giants, dedicated
research scientists and intellectual leaders of the country who can spread the beams of light and
happiness among the poor and the underprivileged.

Department of Mechatronics Engineering, NCERC, Pampady. 1

MRT 363 : OBJECT ORIENTED PROGRAMMING

ABOUT DEPARTMENT
4 Established in: 2013
4 Course offered: B.Tech Mechatronics Engineering
¢ Approved by AICTE New Delhi and Accredited by NAAC

¢ Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

To develop professionally ethical and socially responsible Mechatronics engineers to serve the
humanity through quality professional education.

DEPARTMENT MISSION

1) The department is committed to impart the right blend of knowledge and quality
education to create professionally ethical and socially responsible graduates.

2) The department is committed to impart the awareness to meet the current challenges in
technology.

3) Establish state-of-the-art laboratories to promote practical knowledge of mechatronics to
meet the needs of the society

PROGRAMME EDUCATIONAL OBJECTIVES

l. Graduates shall have the ability to work in multidisciplinary environment with good
professional and commitment.

I. Graduates shall have the ability to solve the complex engineering problems by applying
electrical, mechanical, electronics and computer knowledge and engage in lifelong learning in
their profession.

1. Graduates shall have the ability to lead and contribute in a team with entrepreneur skills,
professional, social and ethical responsibilities.

V. Graduates shall have ability to acquire scientific and engineering fundamentals necessary
for higher studies and research.

Department of Mechatronics Engineering, NCERC, Pampady. 2

MRT 363 : OBJECT ORIENTED PROGRAMMING

PROGRAM OUTCOME (PO’S)
Engineering Graduates will be able to:

PO 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

PO 2. Problem analysis: ldentify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

PO 3. Design/development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO 4. Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

PO 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex engineering

activities with an understanding of the limitations.

PO 6. The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

PO 7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

PO 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

Department of Mechatronics Engineering, NCERC, Pampady. 3

MRT 363 : OBJECT ORIENTED PROGRAMMING

PO 9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO 10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

PO 11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO 12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOME(PSO’S)

PSO 1: Design and develop Mechatronics systems to solve the complex engineering problem by

integrating electronics, mechanical and control systems.

PSO 2: Apply the engineering knowledge to conduct investigations of complex engineering

problem related to instrumentation, control, automation, robotics and provide solutions.

Department of Mechatronics Engineering, NCERC, Pampady. 4

MRT 363 : OBJECT ORIENTED PROGRAMMING

COURSE OUTCOME

After the completion of the course the student will be able to

CO1 Understand the special features of object oriented programming approach in

connection with C++

CO2 Apply the concept of constructors.

CO3 Apply the concept of Operator Overloading.

CO4 Evaluate the different exception handling mechanisms.

CO5 Apply virtual and pure virtual functions and complex programming srituations.

CO6 Illustrate the process of data file manipulations using C++.

CO VS PO’S AND PSO’S MAPPING

CO | PO1 | PO | PO3 | PO | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO | PSO

2 4 1 2
COo1l| 3 2 1 . 1 2 - 1 - 3 - 3 3 3
cCo2| 3 3 1 2 2 - - 2 - 3 1 3 2 3
CO3| 3 3 1 2 1 - - 2 - 3 1 3 3 3
CO4| 3 3 2 |3 - - - - - - - 3 2 2
CO5| 3 2 1 3 - - - 1 - 2 1 3 3 2
CO6 3 112 - 2 - - - - 3 - 3 2 2

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

Department of Mechatronics Engineering, NCERC, Pampady. 5

MRT 363 : OBJECT ORIENTED PROGRAMMING

SYLLABUS

Module 1: Object oriented programming concepts - objects - classes - methods and
messages - abstraction and encapsulation - inheritance - abstract classes -
polymorphism. Introduction to C++ - classes - access specifiers - function and data
members - default arguments - function overloading - friend functions - constand
volatile functions - static members.

Module 2: Objects - pointers and objects - constant objects - nested classes - local
classes-Constructors - default constructor - Parameterized constructors -
Constructor with dynamic allocation - copy constructor - destructors.

Module 3: Operator overloading - overloading through friend functions -
overloading the assignment operator - type conversion - explicit constructor.

Module 4: Function and class templates - Exception handling - try-catch- throw
paradigm - exception specification - terminate and Unexpected functions -
Uncaught exception.

Module 5: Inheritance - public, private, and protected derivations - multiple
inheritance - virtual base class - abstract class - composite objects Runtime
polymorphism - virtual functions - pure virtual functions - RTT]I - typeid - dynamic
casting - RTTIand templates - cross casting - down casting .

Module 6: Streams and formatted 1/O - I/0 manipulators - file handling - random
access - object serialization - namespaces - std namespace - ANSI String Objects -
standard template library.

Department of Mechatronics Engineering, NCERC, Pampady. 6

MRT 363 : OBJECT ORIENTED PROGRAMMING

QUESTION BANK

Q:NO: QUESTIONS CO |KL | PAGE NO:

1 | How are data and functions organized in an COl |K2 13
object oriented program?

2 | Whatis Object oriented programming? Write COl1 |K1 14
the features of Object Oriented Programming?

3 Distinguish between the following terms CO1 |K2 17
a)Objects and classes
b) Data abstraction and data encapsulation
c) Inheritance and Polymorphism

4 | Describe Inheritance as applied to OOP? COl |K2 18

5 | Write and explain the four features of object COl |K2 22
Oriented Programming?

6 | Explain friend function with example? COl |K5 52

7 Explain static function with example? CO1 |K5 53

8 Explain access modifier public with COl |K5 38
example?

9 Explain two different methods for creating COl |K2 23
objects of the class?

10 How to access class members ? CO1 |K1 24

11 | How can you define a function? Write the COl |K2 32
syntax for function definition? With example

Department of Mechatronics Engineering, NCERC, Pampady. 7

MRT 363 : OBJECT ORIENTED PROGRAMMING

12

How Cascading of 1/0O Operators can be
used?

CO1

K2

19

13

Define member function of a class
(2) Inside class

(2) Outside class

CO1

K2

29

14

Discuss about access modifier private with
example?

Co1

K5

26

Define and write the syntax of pointer to
object concept?
2 | Whatare concept objects? CO2 | K1 71
3 Explain constructor, Briefly describe typesof | CO2 | K3 74
constructor?
4 | Briefly describe default constructor with CO2 | K5 75
example?
5 | Explain copy constructor with example? CO2 | K5 77
6 | Explain parameterized constructor with CO2 | K5 76
example?

Define operator overloading? COos3 86

2 Explain the rules for overloading the CO3 | K1 87
operators?

3 Explain overloading unary operator with a CO3 | K5 88
program?

4 Explain overloading binary operator CO3 | K5 94
overloaded using friend function?

Department of Mechatronics Engineering, NCERC, Pampady.

MRT 363 : OBJECT ORIENTED PROGRAMMING

type?

5 | Explain overloading binary operator with CO3 | K5 91
example?

6 | Briefly describe assignment operator with CO3 | K5 95
example?

7 | With the help of an example describe implicit CO3 | K4 99
type conversion?

8 | With the help of an example describe explicit CO3 | K4 100
type conversion?

9 Explain type conversion and its different CO3 | K2 99

syntax?

1 | Define function template with example? CO4 | K2 102
Write its syntax?
2 | Write the program to handle different data CO4 | K6 101
types without separate code for each of them?
3 | Explain exception handling ? write the syntax | CO4 | K2 104
for exception handlers?
4 Define 1. Try block CO4 | K1 106
2. Catch block
3. Throw keyword
5 | Write a program to implement try , catch and CO4 | K5 108
throw keyword.
6 Define exception specification? Write its CO4 | K2 115

Department of Mechatronics Engineering, NCERC, Pampady.

MRT 363 : OBJECT ORIENTED PROGRAMMING

7 | Twospecial library functions are CO4 | K4 115
implemented in C++ to process exception not
properly handled by catch blocks or exception
thrown outside of a valid try block? Explain
them briefly?

8 | Define uncaught exception? Explain the CO4 | K2 116

functions to handle uncaught exceptions with
example?

9 | Briefly describe catch all handlers with an CO4 | K2 117
example?

10 | Differentiate Single try multiple catch and CO4 | K2 109
catch all paradigm?

1 Explain inheritance? Why and when to use CO5 | K4 120
inheritance?

2 | Write the syntax for inheritance? Explain with | CO5 | K5 121
an example?

3 Illustrate with a real life example how CO5 | K6 122
inheritance is implemented in C++ program?

4 Explain different modes of inheritance? CO5 | K2 122

5 Illustrate with a real life example how CO5 | K6 125
multiple inheritance is implemented in C++
program?

6 | lllustrate with a real life example how single CO5 | K6 124
level inheritance is implemented in C++
program?

Department of Mechatronics Engineering, NCERC, Pampady. 10

MRT 363 : OBJECT ORIENTED PROGRAMMING

7 Illustrate with a real life example how CO5 | K6 127
hierarchical inheritance is implemented in
C++ program?

8 Illustrate with a real life example how multi CO5 | K6 126
level inheritance is implemented in C++
program?

9 Illustrate with a real life example how hybrid CO5 | K6 128
inheritance is implemented in C++ program?

10 | Explain abstract class with the help of an CO5 | K2 139
example?

11 | Distinguish upcasting and down casting? CO5 | K5 149

12 | Write the Prosand Consof RTTI? CO5 | K2 170

13 | Write the syntax of Pure virtual function? CO5 | K2 137

14 | Explain dynamic cast operator with help of a CO5 | K1 147

example?

)

15 | Differentiate between static binding and late CO5 | K2 141

binding?
16 | Explain the use of typeid operator in C++? CO5 | K2 151
1 | Thebasic datatype for I/0O in C++ is the CO6 | K5 174

stream. How?
2 In C++ program, to get information intoafile | CO6 | K6 176
or a program, we need to explicitly instruct
the computer to acquire the desired
information. How?

Department of Mechatronics Engineering, NCERC, Pampady. 11

MRT 363 : OBJECT ORIENTED PROGRAMMING

3 Write the header files used for formatted I/O CO3 K3 177
in C++?

4 | Write a stream input program for the sumof3 | CO6 | K2 179
integers?

5 | Write a sample program to writing to a file? CO6 | K6 181

6 | Write a sample program to reading from a CO6 | K6 182
file?

7 | Write a sample program to close a file? CO6 | K6 183

8 | Write special operations in a file? CO6 | K2 184

9 | C++ standard template library contain 3 well CO6 | K2 204
structured components? Explain

10 | Explain the use of namespace? CO6 | K1 197

11 | How object serialization achieved in C++? CO6 | K2 192

12 | What are the different file opening modes in CO6 | K2 180
C++?

13 | How the random access is achieved in file? CO6 | K2 186

CONTENT BEYOND THE SYLLABUS

S:NO TOPIC PAGE NO:
1 C++ signal handling 234
2 Multidimensional Array in C/ C++ 235
3 Setting up C++ development environment 239

Department of Mechatronics Engineering, NCERC, Pampady. 12

MRT 363 : OBJECT ORIENTED PROGRAMMING

MODULE 1

Basic Concepts of Object Oriented Programming

Object Oriented Programming (OOP) is an approach to program organization
and development that attempts to eliminate some of the pitfalls of conventional
programming methods by incorporating the best of structured programming
features with several powerful new concepts. It is a new way of organizing and
developing programs and has nothing to do with any particular language.
However, not all languages are suitable to implement the OOP concepts easily.

The organization of data and function in object-oriented programs is shown in
fig.1.3. The data of an object can be accessed only by the function associated with
that object. However, function of one object can access the function of other

objects.
Organization of data and function in OOP

Object A Object B
DATA DATA
¢ Communication ¢
b P
FUUNCTION FUNCTION
DATA
*
FUNCTION

Some of the features of object oriented programming are:
* Emphasis is on data rather than procedure.
* Programs are divided into what are known as objects.
* Data structures are designed such that they characterize the objects.
» Functions that operate on the data of an object are ties together in the data
structure.
* Data is hidden and cannot be accessed by external function.
* Objects may communicate with each other through function.

Department of Mechatronics Engineering, NCERC, Pampady. 13

MRT 363 : OBJECT ORIENTED PROGRAMMING

* New data and functions can be easily added whenever necessary.
* Follows bottom up approach in program design.

Object-oriented programming is the most recent concept among programming
paradigms and still means different things to different people.

Basic Concepts of Object Oriented Programming
It is necessary to understand some of the concepts used extensively in object-
oriented programming. These include:

* Objects

* Classes

* Data abstraction and encapsulation

* Inheritance

* Polymorphism

* Dynamic binding

* Message passing

Objects

Objects are the basic run time entities in an object-oriented system. They may
represent a person, a place, a bank account, a table of data or any item that the
program has to handle.

Program objects should be chosen such that they match closely with the real-world

objects. Objects take up space in the memory and have an associated address.

When a program is executed, the objects interact by sending messages to one
another. For example, if “customer” and “account” are to object in a program, then
the customer object may send a message to the count object requesting for the bank
balance. Each object contain data, and code to manipulate data. Objects can
interact without having to know details of each other’s data or code. It is a
sufficient to know the type of message accepted, and the type of response returned
by the objects.

fig 1.5 shows two notations that are popularly used in object-oriented analysis and design.

Department of Mechatronics Engineering, NCERC, Pampady. 14

MRT 363 : OBJECT ORIENTED PROGRAMMING

OBIJECTS: STUDEINT

DATA
Name
Date-of-birth
Marks

FUNCTIONS
Total
Average
Display

Fig. 1.5 representing arn objecr

Classes
The entire set of data and code of an object can be made a user-defined data type
with the help of class. In fact, objects are variables of the type class. Once a class
has been defined, we can create any number of objects belonging to that class.
Each objectis associated with the data of type class with which they are created. A
class is thus a collection of objects similar types. For examples, Mango, Apple and
orange members of class fruit.

Classes are user-defined that types and behave like the built-in types of a
programming language. The syntax used to create an object is not different then
the syntax used to create an integer object in C. If fruit has been defines as a class,
then the statement
Fruit Mango;

Will create an object mango belonging to the class fruit.

Data Abstraction and Encapsulation

The wrapping up of data and function into a single unit (called class) is known as
encapsulation. Data and encapsulation is the most striking feature of a class. The
data is not accessible to the outside world, and only those functions which are
wrapped in the class can access it. These functions provide the interface between
the object’s data and the program. This insulation of the data from direct access by
the program is called data hiding or information hiding.

Abstraction refers to the act of representing essential features without including the
background details or explanation. Classes use the concept of abstraction and are
defined as a list of abstract attributes such as size, wait, and cost, and function
operate on these attributes. They encapsulate all the essential properties of the
object that are to be created.

Department of Mechatronics Engineering, NCERC, Pampady. 15

MRT 363 : OBJECT ORIENTED PROGRAMMING

The attributes are some time called data members because they hold information.
The functions that operate on these data are sometimes called methods or
member function.

Inheritance

Inheritance is the process by which objects of one class acquired the properties of
objects of another classes. It supports the concept of hierarchical classification.
For example, the bird, ‘robin’ is a part of class ‘flying bird” which is again a part of
the class ‘bird’. The principle behind this sort of division is that each derived class
shares common characteristics with the class from which it is derived as illustrated
in fig 1.6.1n OOP, the concept of inheritance provides the idea of reusability. This
means that we can add additional features to an existing class without modifying it.
This is possible by deriving a new class from the existing one. The new class will

have the combined feature of both the classes.

Fig. 1.0 Property mherntances

BRD
Attributes
Features
Lay Eggs
Flyving Bird I_\:on Flyving Bird
Attributes Atrributes
Robin Swallow Penguin Kiwi
Artributes Attributes Attributes Atrributes

Polymorphism

Polymorphism is another important OOP concept. Polymorphism, a Greek term, means the ability to
take more than on form. An operation may exhibit different behavior is different instances. The
behavior depends upon the types of data used in the operation. For example, consider the operation
of addition. For two numbers, the operation will generate a sum. If the operands are strings, then the
operation would produce a third string by concatenation. The process of making an operator to

Department of Mechatronics Engineering, NCERC, Pampady. 16

MRT 363 : OBJECT ORIENTED PROGRAMMING

exhibit different behaviors in different instances is known as operator overloading.

Fig. 1.7 illustrates that a single function name can be used to handle different number and different
types of argument. This is something similar to a particular word having several different meanings
depending upon the context. Using a single function name to perform different type of task is known
as function overloading.

Shape
Draw
h 4
Circle Obyject Box object Triangle Object
Draw (Circle) Draw (box) Draw (triangle)

Fig. 1.7 Polymorphism

Dynamic Binding

Binding refers to the linking of a procedure call to the code to be executed in response to the call.
Dynamic binding means that the code associated with a given procedure call is not known until the
time of the call at run time. It is associated with polymorphism and inheritance. A

function call associated with a polymorphic reference depends on the dynamic type

of that reference.
Message Passing

An object-oriented program consists of a set of objects that communicate with each
other. The process of programming in an object-oriented language, involves the
following basic steps:

1. Creating classes that define object and their behavior,

2. Creating objects from class definitions, and

3. Establishing communication among objects.

Objects communicate with one another by sending and receiving information much
the same way as people pass messages to one another.
Message passing involves specifying the name of object, the name of the function

Department of Mechatronics Engineering, NCERC, Pampady. 17

MRT 363 : OBJECT ORIENTED PROGRAMMING

(message) and the information to be sent. Example:

Emplovee. Salary (name);

A A A

Object

Information

Message
Application of OOP

Real-business system are often much more complex and contain many more
objects with complicated attributes and method. OOP is useful in these types of
application because it can simplify a complex problem. The areas of application of
OOP include:

* Real-time system

* Simulation and modeling

* Object-oriented data bases

* Hypertext, Hypermedia, and expertext

Al and expert systems

* Neural networks and parallel programming

* Decision support and office automation systems

* CIM/CAM/CAD systems

Introduction of C++

C++ is an object-oriented programming language. It was developed by Bjarne
Stroustrup at AT&T Bell Laboratories USA, in the early 1980°s.

Stroustrup, a strong supporter of C, wanted to combine the best of both the
languages and create a more powerful language that could support object-oriented
programming features and still retain the power and elegance of C.

The result was C++. Therefore, C++is an extension of C with a major addition of
the class construct feature ZX. Since the class was a major addition to the original
C language, Stroustrup initially called the new language ‘C with classes’.
However, later in 1983, the name was changed to C++. The idea of C++ comes
from the C increment operator ++, thereby suggesting that C++ is an augmented

Department of Mechatronics Engineering, NCERC, Pampady. 18

MRT 363 : OBJECT ORIENTED PROGRAMMING

version of C.
C+ + is a superset of C. Almost all ¢ programs are also C++ programs. However,
there are a few minor differences that will prevent a ¢ program to run under C++
complier. The most important facilities that C++ adds on to C care classes,
inheritance, function overloading and operator overloading. These features enable
creating of abstract data types, inherit properties from existing data types and
support polymorphism, thereby making C++ a truly object-oriented language.
1.9.1 Application of C++
C++ is a versatile language for handling very large programs; it is suitable for
virtually any programming task including development of editors, compilers,
databases, communication systems and any complex real life applications systems.
 Since C++ allow us to create hierarchy related objects, we can build special
object-oriented libraries which can be used later by many programmers.

* While C++is able to map the real-world problem properly, the C part of C++
gives the language the ability to get closed to the machine-level details.

» C++ programs are easily maintainable and expandable. When a new feature
needs to be implemented, it is very easy to add to the existing structure of an
object.

* It is expected that C++ will replace C as a general-purpose language in the
near future.

1.10 Simple C++ Program

Let us begin with a simple example of a C++ program that prints a string on the screen.

Printing A String

#nclude<iostream=
Using namespace std;
int main()
{
cout<=="" ¢++ is better than c 'n";
return O;
}

Program 1.10.1

This simple program demonstrates several C+— featuges.

1.10.1 Program feature

Like C, the C++ program is a collection of function. The above example contain
only one function main(). As usual execution begins at main(). Every C++
program must have a main(). C++ is a free form language. With a few exception,

Department of Mechatronics Engineering, NCERC, Pampady. 19

MRT 363 : OBJECT ORIENTED PROGRAMMING

the compiler ignore carriage return and white spaces. Like C, the C++ statements
terminate with semicolons.

1.10.2 Comments

C++ introduces a new comment symbol // (double slash). Comment start with a
double slash symbol and terminate at the end of the line.

A comment may start anywhere in the line, and whatever follows till the end of the
line is ignored. Note that there is no closing symbol.

The double slash comment is basically a single line comment. Multiline comments
can be written as follows:

I/ This is an example of
/[C++ program to illustrate

The C comment symbols /*,*/ are still valid and are more suitable for multiline
comments. The following comment is allowed:

[* This is an example of C++ program to illustrate
some of its features */

1.10.3.Output Operator

Cout<<”C++ 1s better than C.”;

Causes the string in quotation marks to be displayed on the screen. This statement
introduces two new C++ features, cout and <<. The identifier cout(pronounced as
C out) is a predefined object that represents the standard output stream in C++.
Here, the standard output stream represents the screen. It is also possible to redirect
the output to other output devices. The operator << is called the insertion or put to
operator.

1.10.4 The iostream File

We have used the following #include directive in the program:

#include <iostream>

The #include directive instructs the compiler to include the contents of the file
enclosed within angular brackets into the source file. The header file iostream.h
should be included at the beginning of all programs that use input/output
statements.

1.10.5 Namespace
Namespace is a new concept introduced by the ANSI C++ standards committee.
This defines a scope for the identifiers that are used in a program. For using the

Department of Mechatronics Engineering, NCERC, Pampady. 20

MRT 363 : OBJECT ORIENTED PROGRAMMING

identifier defined in the namespace scope we must include the using directive, like
Using namespace std;
Here, std is the namespace where ANSI C++ standard class libraries are defined.
All ANSI C++ programs must include this directive. This will bring all the
identifiers defined in std to the current global scope. Using and namespace are the
new keyword of C++.

1.10.6 Return Type of main()
In C++, main () returns an integer value to the operating system. Therefore, every

main () in C++ should end with a return (0) statement; otherwise a warning an
error might occur. Since main () returns an integer type for main () is explicitly
specified as int. Note that the default return type for all functionin C++ is int. The
following main without type and return will run with a warning:

1.11 More C++ Statements
Assume that we should like to read two numbers from the keyboard and display

their average on the screen. C++ statements to accomplish this is shown in
program 1.11.1

Department of Mechatronics Engineering, NCERC, Pampady. 21

MRT 363 : OBJECT ORIENTED PROGRAMMING

AVERAGE OF TWO NUMBERS
#Finclude-dostream b/ include header file

Using namespace std;

Int maimn)

{
Float nnmberl, number? sum_ average;
Cin === mumberl; /f Feead NMumbers
Cin == mumber2; /f from kevboard

Sum = mumberl + mumber?;
Average = sumu/2;

Cout <= "Sum = <= sim <<= “a™;
Cout === “Awverage =~ <= average === \n";
Eeturm O:

¥ Hend of example

Thre ongprr wonld be:
Enter two numbers: §.5 7.5
Sum = 14

Average =7

Program 1.11.1

1.11.1 Variables

The program uses four variables numberl, number2, sum and average. T hey are
declared as type float by the statement.

float numberl, number2, sum, average;

All variable must be declared before they are used in the program.

1.11.2 Input Operator The statement

cin == number];

Is an input statement and causes the program to wait for the user to type in a number. The number
keved in is placed in the vanable numberl. The identifier cin (pronounced “C in’) is a predefined
object in C++ that corresponds to the standard input stream. Here, this stream represents the
kevboard.

The operator => is known as extraction or get from operator. It extracts (or takes) the value from
the keyboard and assigns it to the variable on its right fig 1.8. This corresponds to a familiar scanf()

operation. Like <<, the operator => can also be overloaded.

Department of Mechatronics Engineering, NCERC, Pampady. 22

MRT 363 : OBJECT ORIENTED PROGRAMMING

Object Execution operator WVariable

Keyboard \

1.8 Input using extraction operator

Y

1.11.3 Cascading of 1/O Operators
We have used the insertion operator << repeatedly in the last two statements for
printing results.
The statement
Cout << “Sum = “ << sum << “\n”;
First sends the string “Sum = * to cout and then sends the value of sum. Finally, it
sends the newline character so that the next output will be in the new line. The
multiple use of << in one statement is called cascading. When cascading an output
operator, we should ensure necessary blank spaces between different items. Using
the cascading technique, the last two statements can be combined as follows:
Cout << “Sum = “ << sum << “\n”
<< “Average = “ << average << “\n”;
This is one statement but provides two line of output. If vou want only one line of output, the
statement will be:
Cout <= “Sum =" << sum <<""
<= “Average =" <= gverage << “'n’;
The output will be:
Sum = 14, average =7
We can also cascade input iperator >> as shown below:
Cin == number] > number2;
The values are assigned from left to right. That is, if we kev in two values, say, 10 and 20, then 10
will be assigned to munberl and 20 to number2.

1.12 An Example with Class

* One of the major features of C++ is classes. They provide a method of binding
together data and functions which operate on them. Like structures in C, classes
are user-defined data types.

Department of Mechatronics Engineering, NCERC, Pampady. 23

MRT 363 : OBJECT ORIENTED PROGRAMMING

Program 1.12.1 shows the use of class in a C++ program.

USE OF CLASS
#include<iostream b= // include header file

using namespace std;

class person
{
char name[30];
Int age;
public:
void getdata(void);
void display{void);
}
void person - getdata(void)
{
cout <= “Enter name: *;
Cifl = name;
cout <= “Enter age: *;
cin == age;

}
Void person : : display({void)
{
cout === “nNameame: ~ << name;
cout <= “nAge: <= age;
}
Int main()
{
person p;
p.getdatal);
p.display():
Return O
3 /fend of example

PROGEAM 1.12.1

The ontpur of program is:

Enter Name: Ravinder
Enter age:30
Name:Ravinder

Age: 30

The program define person as a new data of type class. The class person includes

Department of Mechatronics Engineering, NCERC, Pampady.

24

MRT 363 : OBJECT ORIENTED PROGRAMMING

two basic data type items and two function to operate on that data. These functions
are called member function. The main program uses person to declare variables
of its type. As pointed out earlier, class variables are known as objects. Here, p is
an object of type person. Class object are used to invoke the function defined in
that class.

Structure of C++ Program

The structure of C++ program is divided into four different sections:
(1) Header File Section

(2) Class Declaration section

(3) Member Function definition section

(4) Main function section

(1) Header File Section:

0 This section contains various header files.
0 You can include various header files in to your program using this section.

For example:
include <iostream.h >

0 Header file contains declaration and definition of various built in functions as
well as object. In order to use this built in functions or object we need to include
particular header file in our program.

(2) Class Declaration Section:

0 This section contains declaration of class.

0 You can declare class and then declare data members and member functions
inside that class.

For example:
class Demo

{

int a, b;
public:

Department of Mechatronics Engineering, NCERC, Pampady. 25

MRT 363 : OBJECT ORIENTED PROGRAMMING

void input(); void output();
}

0 You canalso inherit one class from another existing class in this section.

(3) Member Function Definition Section:

0 This section is optional in the structure of C++ program.

0 Because you can define member functions inside the class or outside the class. If
all the member functions are defined inside the class then there is no need of this
section.

o0 This section is used only when you want to define member function outside the
class.

o This section contains definition of the member functions that are declared inside
the class.

For example:

void Demo:: input ()

{

cout << “Enter Value of A:”;
cin>> a;

cout << “Enter Value of B:”;
cin >> b;

}

(4) Main Function Section:

0 In this section you can create an object of the classand then using this
object you can call various functions defined inside the class as per your
requirement.

For example:
void main ()
{ Demo d1; dl.input (); dl.output (); }

We can also compare the structure of C++ program with client server application.

Department of Mechatronics Engineering, NCERC, Pampady. 26

MRT 363 : OBJECT ORIENTED PROGRAMMING

In client server application client send request to the server and server sends
response to the client.

In above C++ structure the class declaration section and member function
definition section both together works as a server and main () function section

works as a client. Because in main () function section we create an object of the
class and then using that object we make a call to the function declared in the class.

What is Class?

A class is a user defined data type that allows us to bind data and its
associated functions together as a single unit. Thus class provides the
facility of data encapsulation.

Class provides the facility of data hiding using the concept of visibility
mode such as public, private and protected.

Once a class is defined we can create an object of the class to access
variablesand functions defined inside the class.

Syntax:

class Class_Name

{

Private:

Data-Type Variable Name;

Function declaration or Function Definition;
Public:

Data-Type Variable Name;

Function declaration or Function Definition;

¥

Class can be created using the class keyword. The class definition starts with curly
bracket and ends with curly bracket followed by semicolon.
We can declare variables as well as functions inside the curly bracket as shown in
the syntax. The variables defined inside class are known as data member and the
function declared inside the class are known as member function.

Department of Mechatronics Engineering, NCERC, Pampady. 27

MRT 363 : OBJECT ORIENTED PROGRAMMING

In order to provide data hiding facility class provides the concept of visibility
mode such as private, public or protected. If you don’t specify any visibility
mode for the member of the class then by default all the members of the class
are considered as private.

The data member and member function declared as a public can be accessed
directly using the object of the class. But the data member and member function
declared as private cannot be accessed directly using the object of the class.

Example:

class test

{

inta, b;

public:

void input ();

{

cout<<"EnterValueofaand b";
cin>>a>>b;

}
void output ()

{

Cout<<lIA:ll<<a<<llB:ll<<b;

}
h

Create Object in C++:There are two different methods for creating objects

of the class:
(1) We can create object at the time of specifying a class after the closing curly
bracket.

Example:
Class test

{
int a,b;
public:

Department of Mechatronics Engineering, NCERC, Pampady. 28

MRT 363 : OBJECT ORIENTED PROGRAMMING

void input ();

void ouput ();

H1,12,t3;

Here, t1, t2 and t3 are the objects of class test.

(2) We can create object inside the main function using name of the

class.

The general syntax for creating object inside main function is as below:
Class_Name Object_Name;

Example:

Test tl, t2, t3;

Here, t1, t2 and t3 are the objects of class test.

How to Access Class Members?

The data member and member function declared as a public can be accessed
directly using the object of the class. But the data member and member function
declared as private cannot be accessed directly using the object of the class.

We can access private member of the class using public member of the class.

The general syntax for accessing public member using object is given below:
Object_Name. Data_Member = value;

Object_Name. Member_Function (Argument_L.ist);

Example:

T1. input ();

T1. output ();

Example:
class Test

{

int b;

Public:

int a;

void inputb()
{

b=20;

Department of Mechatronics Engineering, NCERC, Pampady. 29

MRT 363 : OBJECT ORIENTED PROGRAMMING

¥

o

int main()

{

Testtl,

T1.a=10; //works becauseais public

T1.b=20; //error because b is private

T1.inputb (); //works because inputb () is public
return O;

}
Access Modifiers in C++

Access modifiers are used to implement important feature of Object Oriented Programming known
as Data Hiding.

Access modifiers or Access Specifiers in a class are used to set the accessibility of the class members.
That is, it sets some restrictions on the class members not to get directly accessed by the outside
functions.

There are 3 types of access modifiers available in C++:

1. Public
2. Private
3. Protected
Note: If we do not specify any access modifiers for the members inside the class then by default

the access modifier for the members will be Private.

Let us now look at each one these access modifiers in details:

Department of Mechatronics Engineering, NCERC, Pampady. 30

https://www.geeksforgeeks.org/c-classes-and-objects/

MRT 363 : OBJECT ORIENTED PROGRAMMING

Public: Allthe class members declared under public will be available to everyone. The data members and member
functions declared public can be accessed by other classestoo. The public members of a class canbe accessed from
anywhere in the programusing the direct member access operator (.) with the object of that class.

/I C++ program to demonstrate public access modifier

#include<iostream>
using namespace std;
/I class definition

class Circle

{
public:

double radius;

double compute_area()

{

return 3.14*radius*radius;

// main function
int main()
{

Circle obj;

/I accessing public datamember outside class

obj.radius=5.5;

Department of Mechatronics Engineering, NCERC, Pampady. 31

MRT 363 : OBJECT ORIENTED PROGRAMMING

cout <<"Radiusis:" <<obj.radius<<"\n";
cout<<"Areais:" <<obj.compute_area();

return O;

Output:

Radius is:5.5

Area is:94.985

In the above program the data member radius is public so we are allowed to access it outside the class.

= Private: The class members declared as private can be accessed only by the functions inside the class.
They are not allowed to be accessed directly by any object or function outside the class. Only the member
functions or_the friend functions are allowed to access the private data members of a class.

Example:

Department of Mechatronics Engineering, NCERC, Pampady. 32

https://www.geeksforgeeks.org/friend-class-function-cpp/

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I C++ programto demonstrate private

/] access modifier

#include<iostream>

using namespace std;

class Circle

{
/I private datamember
private:

double radius;

/I public member function
public:
double compute_area()
{ /I'member function can access private
// data member radius

return 3.14*radius*radius;

/[main function
int main()
{
[/ creating object of the class

Circle obj;

Department of Mechatronics Engineering, NCERC, Pampady.

33

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I'trying to access private datamember
/l directly outside the class

obj.radius=1.5;

cout<<"Areais:" <<obj.compute_area();

return 0;

}

= Theoutput ofabove programwill be a compile time errorbecause we are not allowed to access the private
data members of a class directly outside the class.

Output:

= In function 'int main()"

= 11:16: error: 'double Circle::radius' is private

u double radius;

n AN

B 31:9: error: within this context

= obj.radius = 1.5;

n A

= Howeverwe can access the privatedatamembers ofa class indirectly using the public member functions of
the class. Below program explains how to do this:

Department of Mechatronics Engineering, NCERC, Pampady. 34

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I C++ programto demonstrate private

/] access modifier

#include<iostream>

using namespace std;

class Circle

{
/I private datamember
private:

double radius;

/I public member function
public:
double compute_area(double r)
{ /I'member function can access private
// data member radius

radius =r;

double area =3.14*radius*radius;

cout <<"Radiusis:" <<radius <<endl;

cout<<"Areais:" <<area;

Department of Mechatronics Engineering, NCERC, Pampady.

35

MRT 363 : OBJECT ORIENTED PROGRAMMING

{// main function
int main()
{
// creating object ofthe class

Circle obj;

/1trying to access privatedatamember
/I directly outside the class

obj.compute_area(1.5);

return O;

}

= Output:
= Radius is:1.5

= Areais: 7.065

Protected: Protected access modifier is similar to that of private access modifiers, the difference is that the class
member declared as Protected are inaccessible outside the class buttheycan be accessed by any subclass(derived
class) of that class.

Department of Mechatronics Engineering, NCERC, Pampady. 36

MRT 363 : OBJECT ORIENTED PROGRAMMING

Department of Mechatronics Engineering, NCERC, Pampady.

37

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I C++ programto demonstrate
/I protected access modifier
#include <bits/stdc++.h>

using namespace std;

/I'base class

class Parent

{
/I protected data members
protected:

int id_protected;

/I sub classorderivedclass

class Child : public Parent

{

public:
void setld(int id)

{

// Child class is able to access the inherited

// protected data members of baseclass

id_protected =id;

Department of Mechatronics Engineering, NCERC, Pampady.

38

MRT 363 : OBJECT ORIENTED PROGRAMMING

void displayld()
{

cout <<"id_protected is:" <<id_protected <<endl;

// main function

int main() {

Child obji;

// member functionofderived class can

/l'access the protected data members ofbaseclass

objl.setld(81);
objl.displayld();

return O;

= Output:

u id _protected is:81

Define Member Function of Class

Member function can be defined in two different way:
(1) Inside class

Department of Mechatronics Engineering, NCERC, Pampady.

39

MRT 363 : OBJECT ORIENTED PROGRAMMING

(2) Outside class

(1) Inside Class:/Inline functions

When we declare the function in the class at the same time we can also give the
definition of the function in the class as shown below:

class Test

{

int a,b;

public:

void input ()

{

cout<<"Enter Value of a";
cin>>a>>Db;

}

};

The function defined inside class becomes inline by default.

(2) Outside Class:

We can also define the member function outside the class. But at that time we have
to instruct compiler this function belongs to which class using scope resolution
operator as follow:

Syntax:
Return-Type Class_Name :: Function_Name (parameter list)

{

Function definition

¥
Example:

class Test

{

int a,b;

Public:

void input ();

}

void test :: input ()

Department of Mechatronics Engineering, NCERC, Pampady. 40

MRT 363 : OBJECT ORIENTED PROGRAMMING

{

cout<<"Enter Value of a";
cin>>a>>b;

¥

Making outside function inline

The function defined inside the class becomes inline by default so all the restriction
that applied to inline functionis also applied to the member function defined inside
the class.

However we can also make the function inline which is defined outside the class.
To make the outside function inline we have to just precede the definition with the
keyword inline.

Example.

class Test

{

int a, b;

public:

void input ()

{

cout<<"Enter value of a and b";
cin>>a>>b:

}

void output ();

+

inline void Test:: output ()

{
cout<<"A="<<a<<endl<<"B="<<b;

}
Private Member Function in C++

Like data member of the class a member function can also be declared as private so
that it cannot be accessed outside the class.
If we declare private member function then it cannot be accessed directly using the

Department of Mechatronics Engineering, NCERC, Pampady. 41

MRT 363 : OBJECT ORIENTED PROGRAMMING

object of the class so we have to access it from the public member function of the

same class.

Example:

class Circle

{

intr;

float area ();

public:

void getRadius ();

void DisplayArea ();

o

int Circle ::area ()

{

return (3.14*r*r); }
void Circle :: getRadius ()
{

cout<<"Enter Radius";
cin>>r;

¥

void Circle ::DisplayArea ()
{
Cout<<"Area="<<area();
¥

int main()

{

Circle C1;
C1.getRadius();
C1.DisplayArea ();

return O;

¥

In the above example we have declared three member function getRadius (),

DisplayArea () and area (). In which area () is defined as private. We have called
only two member functions getRadius () and DisplayArea () using the name of the

Department of Mechatronics Engineering, NCERC, Pampady.

42

MRT 363 : OBJECT ORIENTED PROGRAMMING

object inside main function. We have called the third member function area () from

inside the DisplayArea () member function. T his concept is known as private
member function.

functons

A function is a group of statements that together perform a task. Every C++ program has at least
one function, which is main(), and all the most trivial programs can define additional functions.

You can divide up your code into separate functions. How you divide up your code among

different functions is up to you, but logically the division usually is such that each function
performs a specific task.

A function declaration tells the compiler about a function's name, return type, and parameters.
A function definition provides the actual body of the function.

The C++ standard library provides numerous built-in functions that your program can call. For
example, function strcat() to concatenate two strings, function memcpy() to copy one memory
location to another location and many more functions.

A function is known with various names like a method or a sub-routine or a procedure etc.

Defining a Function

The general form of a C++ function definition is as follows —

return_type function_name(parameter list) {
body of the function
}

A C++ function definition consists of a function header and a function body. Here are all the

parts of a function —

e Return Type — A function may return a value. The return_type is the data type of the value the
function returns. Some functions perform the desired operations without returning a value. In this
case, the return_type is the keyword woid.

e Function Name — This is the actual name of the function. The function name and the parameter list
together constitute the function signature.

e Parameters — A parameter is like a placeholder. When a function is invoked, you pass a value to the

parameter. This value is referred to as actual parameter or argument. The parameter list refers to the

Department of Mechatronics Engineering, NCERC, Pampady. 43

MRT 363 : OBJECT ORIENTED PROGRAMMING

type, order, and number of the parameters of a function. Parameters are optional; that is, a function

may contain no parameters.

e Function Body — The function body contains a collection of statements that define what the function

does.

Example

Following is the source code for a function called max(). This function takes two parameters
numl and num2 and return the biggest of both —
/ function returningthe max between two numbers
int max(int num1, int num2) {

/I 'local variable declaration

int result;

if (num1 > num?2)

result = num1;
else

result = num2;

return result;

}

Function Declarations

A function declaration tells the compiler about a function name and how to call the function.
The actual body of the function can be defined separately.

A function declaration has the following parts —

return_type function_name(parameter list);

For the above defined function max(), following is the function declaration —

int max(int num1, int num2);

Parameter names are not important in function declaration only their type is required, so

following is also valid declaration —
int max(int, int);
Function declaration is required when you define a function in one source file and you call that

function in another file. In such case, you should declare the function at the top of the file
calling the function.

Department of Mechatronics Engineering, NCERC, Pampady. 44

MRT 363 : OBJECT ORIENTED PROGRAMMING

Calling a Function

While creating a C++ function, you give a definition of what the function has to do. To use a
function, you will have to call or invoke that function.

When a program calls a function, program control is transferred to the called function. A called

function performs defined task and when it’s return statement is executed or when its function-

ending closing brace is reached, it returns program control back to the main program.

To call a function, you simply need to pass the required parameters along with function name,

and if function returns a value, then you can store returned value. For example —

#include <iostream>

using namespace std;

/I function declaration

int max(int num1, int num2);

intmain () {
/l'local variable declaration:
int a= 100;
int b = 200;
int ret;
/I calling a function to getmax value.
ret = max(a, b);
cout<<"Maxvalueis: " <<ret << endl;
return O;
}
Il function returning the max between two numbers
int max(int num1, intnum2) {

[/I'local variable declaration

Department of Mechatronics Engineering, NCERC, Pampady. 45

MRT 363 : OBJECT ORIENTED PROGRAMMING

int result;

if (numl > num2)
result =numdi;

else

result=num2;

return result;
}

I kept max() function along with main() function and compiled the source code. While running
final executable, it would produce the following result —

Max value is : 200

Function Arguments

If a function is to use arguments, it must declare variables that accept the values of the
arguments. These variables are called the formal parametersof the function.

The formal parameters behave like other local variables inside the function and are created upon
entry into the function and destroyed upon exit.

While calling a function, there are two ways that arguments can be passed to a function —

Sr.No Call Type & Description

1 Call by Value

This method copies the actual value of an argument into the formal parameter of the function.
In this case, changes made to the parameter inside the function have no effect on the

argument.

Department of Mechatronics Engineering, NCERC, Pampady. 46

https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_value.htm

MRT 363 : OBJECT ORIENTED PROGRAMMING

2 Call by Pointer

This method copies the address of an argument into the formal parameter. Inside the function,
the address is used to access the actual argument used in the call. This means that changes
made to the parameter affect the argument.

3 Call by Reference

This method copies the reference of an argument into the formal parameter. Inside the
function, the reference is used to access the actual argument used in the call. This means that

changes made to the parameter affect the argument.

By default, C++ uses call by value to pass arguments. In general, this means that code within a
function cannot alter the arguments used to call the function and above mentioned example
while calling max() function used the same method.

Default VValues for Parameters

When you define a function, you can specify a default value for each of the last parameters.
This value will be used if the corresponding argument is left blank when calling to the function.

This is done by using the assignment operator and assigning values for the arguments in the
function definition. If a value for that parameter is not passed when the function is called, the
default given value is used, but if a value is specified, this default value is ignored and the
passed value is used nstead. Consider the following example —
#include <iostream>
using namespace std;

intsum(inta, intb = 20) {

int result;

result=a +b;

return (result);}
intmain () {

/l'local variable declaration:

int a= 100;

Department of Mechatronics Engineering, NCERC, Pampady. 47

https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_pointer.htm
https://www.tutorialspoint.com/cplusplus/cpp_function_call_by_reference.htm

MRT 363 : OBJECT ORIENTED PROGRAMMING

int b =200;

int result;

/I calling a function to addthe values.
result =sum(a, b);

cout<<"Totalvalueis :" <<result << end];
/I calling afunction again as follows.

result =sum(a);

cout <<"Totalvalueis :" <<result << endl;

return 0; }

When the above code is compiled and executed, it produces the following result —

Total valueis :300
Total value is :120

Memory Allocation for Object of Class

Once you define class it will not allocate memory space for the data member of the class. The memo
allocation for the data member of the class is performed separately each time when an object of the c
is created.

Since member functions defined inside class remains same for all objects, only memory allocation of
member function is performed at the time of defining the class.

Thus memory allocation is performed separately for different object of the same class. All the data
members of each object will have separate memory space.

The memory allocation of class members is shown below:

ry
lass

Department of Mechatronics Engineering, NCERC, Pampady.

48

MRT 363 : OBJECT ORIENTED PROGRAMMING

Member Member

Function 1 Function2

Meaemory allocated at the timme of defining member
function. It is common for all object of thhe class.

Data Maemberl Data Memberl
Data '\’Ir:-till)c-r) Data \lt—-rnbvr?

objeut 2

Ob]ect 1

Memory allocated ot the time of defining the object .
Meaemory allocated separately for each data member
of different object.

Hence data member of the class can contain different value for the different object,
memory allocation is performed separately for each data member for different
object at the time of creating an object.

Member function remains common for all object. Memory allocation is done only
once for member function at the time of defining it.

Create an Array of Object

Like data member of the class we can also create an array of objects. Array of object is useful when we
want to create large number of objects of the same class.

Example:
#include<iostream.h>
class Student

{

int rollno; char name[20];
public:

Department of Mechatronics Engineering, NCERC, Pampady. 49

MRT 363 : OBJECT ORIENTED PROGRAMMING

void Input(); void Output();

3

void Student::Input()

{ cout<<"Enter Roll Number:"; cin>>rollno; cout<<"Enter Name:"; cin>>name; }
void Student::Output()

{ cout<<"Roll Number:"<<rollno<<endl; cout<<"Name:"<<name<<endl;
}

int main()

{

Student S[3]; inti; for(i=0;i<3;i++) S[i].Input();

for(i=0;i<3;i++)

S[i].Output();

return O;

}

Output:

Enter Roll Number: 1
Enter Name: Mukesh
Enter Roll Number: 2
Enter Name: Ruchin
Enter Roll Number: 3
Enter Name: Mehul

Static Data Member of Class

In C++ memory is allocated separately for each data member for different objects. So if you change the
value of data member of class using one object will not affect the value of the same data member for other
object of the same class. However sometimes it is required that all the objects of the same class share
some common variables. This can be accomplished using the concept of static data member.

We can declare static data members using static keyword.

Static data member having several characteristics which are given be low:

(1) Hence all the object of the same class share static data member memory is allocated only once to the
static data member. It remains common for all the objects of the same class.

(2) Static data member is initialized to 0 when first object of the class is created.

Static data member is declared in the class but it must be defined outside the class using class name
and scope resolution operator (::) because memory allocation for static data member of the class is
performed different then normal data member of the class and it is not the part of class object.

Example:
#include<iostream.h>
#include<conio.h>
class item

{

Department of Mechatronics Engineering, NCERC, Pampady. 50

MRT 363 : OBJECT ORIENTED PROGRAMMING

static int count;
public:
void DisplayCounter()

{

count++;
cout<<"count:"<<count;

h
int item::count;
int main()

{

item a,b,c;
a.DisplayCounter();
b.DisplayCounter();
c.DisplayCounter();
return O;

}
Output:

Count: 1
Count: 2
Count: 3

Static Member Function of Class

Like data member of the class, member function of the class can also be declared
as a static.

Static member functions are designed to work with static data members.

In order to make a member function as static we need to precede the function
declaration with static keyword.

Static member function having several characteristics which are given below:
(1) Static member function can access only static member of the class in which it is
declared.

(2) Static member function is not a part of class object so it can not be called using
object of the class. Static member function can be called using class name and
scope resolution operatoras shown below:

Class_Name :: Function_Name();

Example:

#include <iostream.h>
#include <conio.h>
class test

{

Department of Mechatronics Engineering, NCERC, Pampady. 51

MRT 363 : OBJECT ORIENTED PROGRAMMING

private:

static int count;

public:

void setCount(void);

static void DisplayCounter(void);
¥

void test :: setCount(void)

{

count++;

}

void test :: DisplayCounter(void)
{

cout<<"Count:"<< count << endl;
}

int test::count;

int main(void)

{

test tl, t2;

clrscr();

t1.setCount();

test :: DisplayCounter();
t2.setCount();

test :: DisplayCounter();
getch();

return(0);

} Output:

Count: 1

Count: 2

Friend Function:A friend function is a function that is not a member of a class
but it can access private and protected member of the class in which it is declared

as friend.

Since friend function is not a member of class it can not be accessed using object of the class. It is called
in the same way as normal external function is called.

It works same as your real life friend. Your friend is not a member of your family but still he knows about
you and your family.

Sometimes it is required that private member of the class can be accessed outside the class at that time we
have to use friend function.

A function can be declared as a friend by preceding function declaration with friend keyword as shown
below:

friend Return_Type Function_Name (Argument List);

Example:

Department of Mechatronics Engineering, NCERC, Pampady. 52

MRT 363 : OBJECT ORIENTED PROGRAMMING

#include<iostream.h>
class Circle

{

intr;

public:

void input()

{

cout<<"Enter Radius:"";
cin>>r;

}

friend float area(Circle C);
h

float area(Circle C)

{

return (3.14*C.r*C.r);

}

int main()

{

Circle C1;

Cl.input(); cout<<"Area of Circleis:"<<area(C1l); returnO;

}

Friend function having following characteristics:

(1) A friend function can be declared inside class but it is not member of the class.

(2) It can be declared either public or private without affecting its meaning.

(3) A friend function is not a member of class so it is not called using object of the class. It is called like
normal external function.

(4) A friend function accepts object as an argument to access private or public member of the class.

(5) A friend function can be declared as friend in any number of classes.

Const member functionsin C++

A function becomes constwhen const keyword is used in function’s declaration. Theidea of const functions is not
allow themto modify the object on which they are called. It is recommended practice to make as many functions
const as possible so that accidental changes to objects are avoided.

Following is a simple example of const function.

Department of Mechatronics Engineering, NCERC, Pampady. 53

MRT 363 : OBJECT ORIENTED PROGRAMMING

#include<iostream>

using namespace std;

class Test{
int value;
public:

Test(intv =0) {value=v;}

/I We get compilererror if we add a line like "value =100;"
/l'inthis function.

int getValue() const {return value;}

¥

int main() {
Test t(20);
cout<<t.getValue();
return 0O;

}

Run on IDE

Output:
20

When afunctionis declaredas const, it can be called on any type of object. Non-const functions can only be called
by non-const objects.

For example the following program has compiler errors.

Department of Mechatronics Engineering, NCERC, Pampady. 54

MRT 363 : OBJECT ORIENTED PROGRAMMING

#include<iostream>

using namespace std;

class Test{
int value;

public:
Test(intv =0) {value=v;}
int getValue() {return value; }

j2

int main() {
const Testt;
cout <<t.getValue();

return O;

}

Run on IDE

Output:

passing ‘const Test' as 'this' argument of 'int

Test::getValue()' discards qualifiers

Please write comments if you find anything incorrect, or you want to share more information about the topic

discussed above.

C++ Tokens

C++ Tokens are the smallest individual units of a program.

Department of Mechatronics Engineering, NCERC, Pampady.

55

MRT 363 : OBJECT ORIENTED PROGRAMMING

Following are the C++ tokens : (most of c++ tokens are basically similar to the C tokens)

Keywords
Identifiers
Constants
Variables

Operators

Keywords
The reserved words of C++ may be conveniently placed into several groups. In the first

group we put those that were also present in the C programming language and have been
carried over into C++. There are 32 of these, and here they are:

auto const double float int short struct unsigned break continue else for

long signed switch wvoid case default enum goto register sizeof typedef volatile
char do extern if return static union while

Identifiers

Identifiers refers to the name of variables, functions, arrays, classes, etc. created by the user.
Identifiers are the fundamental requirement of any language.

Identifier naming conventions

e Only alphabetic characters, digits and underscores are permitted.

e First letter must be an alphabet or underscore ().

o Identifiers are case sensitive.

e Reserved keywords can not be used as an identifier's name.
Constants

Constants refers to fixed values that do not change during the execution of a program.

Declaration of a constant :

const [data_type] [constant_name]=[value];

Consider the example

#include <iostream.h>
int main()

{

Department of Mechatronics Engineering, NCERC, Pampady. 56

MRT 363 : OBJECT ORIENTED PROGRAMMING

const int max_length=100; /l integer constant

const char choice="Y"; I character constant
const char title[]="www.includehelp.com™; // string constant
const float temp=12.34; /I float constant

cout<<"max_length "<<max_length<<endl,
cout<<"choice :"<<choice<<endl;
cout<<'title :"<<title<<endl;

cout<<"temp :"<<temp<<endl;

return O;

Output

max_length :100
choice Y

title www.includehelp.com
temp :12.34

Variable

A variable is a meaningful name of data storage location in computer memory. When using a
variable you refer to memory address of computer.

We know that in C, all variables must be declared before they are used, this is true with C++.

The main difference in C and C++ with regards to the place of their declaration in the
program...

C requires all the variables to be defined in the beginning of scope.

C++ allows the declaration of a variable anywhere in the scope, this means that a
variable can be declared right at the place of its first use.

Syntax to declare a variable :

[data_type] [variable_name];

Consider the example

#include <iostream.h>

Department of Mechatronics Engineering, NCERC, Pampady. 57

MRT 363 : OBJECT ORIENTED PROGRAMMING

int main()
{
int a,b;
cout<<" Enter first number :";
cin>>3;
cout<<" Enter second number:";

cin>>b;

int sum; // declaration

[*this type of declaration will not allow in C*/
sum=a+b;

cout<<" Sum is : "<<sum <<"\n"

return O;

Output

Enter first number 55

Enter second number:15

Sumis : 70

Operators in C/ C++

We can define operators as symbols that helps us to perform specific mathematical and logical
computations on operands. In other words we can say that an operator operates the operands.
For example, consider the below statement:

Department of Mechatronics Engineering, NCERC, Pampady. 58

MRT 363 : OBJECT ORIENTED PROGRAMMING

c=a+h;

Here, ‘“+’ is the operator known as addition operator and ‘a’ and ‘b’ are operands. The addition
operator tells the compiler to add both of the operands ‘a’ and ‘b’.

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. C++ is rich in built-in operators and provide the following types of operators —

Arithmetic Operators
o Relational Operators

e Logical Operators

e Bitwise Operators

e Assignment Operators
e Misc Operators

This chapter will examine the arithmetic, relational, logical, bitwise, assignment and other
operators one by one.

Arithmetic Operators

There are following arithmetic operators supported by C++ language —
Assume variable A holds 10 and variable B holds 20, then —

Show Examples

Operator Description Example

+ Adds two operands A + B will give 30
- Subtracts second operand fromthe first A - B will give -10

* Multiplies both operands A * B will give 200

Department of Mechatronics Engineering, NCERC, Pampady. 59

https://www.tutorialspoint.com/cplusplus/cpp_arithmatic_operators.htm

MRT 363 : OBJECT ORIENTED PROGRAMMING

Divides numerator by de-numerator

B/ A will give 2

value by one

% Modulus Operatorand remainder of afteran | B % A will give 0
integer division
++ Increment operator, increases integer A++ will give 11

Decrement operator, decreases integer
value by one

A-- will give 9

Relational Operators

There are following relational operators supported by C++ language

Assume variable A holds 10 and variable B holds 20, then —

Show Examples

Operator

Description

Example

Checks if the values of two operands are
equal or not, if yes then condition becomes
true.

(A == B) is nottrue.

Checks if the values of two operands are
equal or not, if values are notequalthen
condition becomes true.

(A !'=B) is true.

Checks if the value of left operand is greater
than the value of right operand, if yes then
condition becomes true.

(A > B) is nottrue.

Department of Mechatronics Engineering, NCERC, Pampady.

60

https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_relational_operators.htm

MRT 363 : OBJECT ORIENTED PROGRAMMING

Checks if the value of left operand is less
than the value of right operand, if yes then
condition becomes true.

(A <B)is true.

Checks if the value of left operand is greater
than or equal to the value of right operand,
if yes then condition becomes true.

(A >=B) is nottrue.

Checks if the value of left operand is less
than or equal to the value of right operand,
if yes then condition becomes true.

(A <=B) is true.

Logical Operators

There are following logical operators supported by C++ language.

Assume variable A holds 1 and variable B holds 0, then —

Show Examples

Operator

Description

Example

&&

Called Logical AND operator. If both the
operands are non-zero, then condition
becomes true.

(A && B) is false.

Called Logical OR Operator. If any of the
two operands is non-zero, then condition
becomes true.

(A]l B) is true.

Called Logical NOT Operator. Use to
reverses the logical state of its operand. If a
condition is true, then Logical NOT
operatorwill make false.

I(A && B) is true.

Department of Mechatronics Engineering, NCERC, Pampady.

61

https://www.tutorialspoint.com/cplusplus/cpp_logical_operators.htm

MRT 363 : OBJECT ORIENTED PROGRAMMING

Bitwise Operators

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and *
are as follows —

p q p&q Pla P"q
0 0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Assume if A =60; and B = 13; now in binary format they will be as follows —
A =0011 1100

B = 0000 1101

A&B = 0000 1100

A|B =0011 1101

A"B = 0011 0001

~A =1100 0011

The Bitwise operators supported by C++ language are listed in the following table. Assume
variable A holds 60 and variable B holds 13, then —

Show Examples

Operator Description Example

Department of Mechatronics Engineering, NCERC, Pampady. 62

https://www.tutorialspoint.com/cplusplus/cpp_bitwise_operators.htm

MRT 363 : OBJECT ORIENTED PROGRAMMING

& Binary AND Operator copies a bit to the

result if it exists in both operands. (A & B) will give 12 which is 0000 1100

Binary OR Operator copies a bit if it exists (A | B) will give 61 which is 0011 1101
in either operand.

A Binary XOR Operator copies the bit if it is

. A " B) will give 49 which is 0011 0001
setin one operand but not both. () will give 49 which is

~ Binary Ones Complement Operator is unary | (~A) will give-61 which is 1100 0011 in
and has the effect of 'flipping' bits. 2's complement form dueto a signed binary
number.

<< Binary Left Shift Operator. The left
operands value is moved left by thenumber | A << 2 will give 240 which is 1111 0000
of bits specified by the right operand.

>> Binary Right Shift Operator. The left
operands value is moved right by the
number of bits specified by the right
operand.

A >> 2 will give 15 which is 0000 1111

Assignment Operators

There are following assignment operators supported by C++ language —

Show Examples

Operator Description Example
= Simple assignment operator, Assigns values C = A+ Bwill assignvalueof A +B
from right side operands to left side operand. into C

Department of Mechatronics Engineering, NCERC, Pampady. 63

https://www.tutorialspoint.com/cplusplus/cpp_assignment_operators.htm

MRT 363 : OBJECT ORIENTED PROGRAMMING

+= Add AND assignment operator, It adds right
operand to the left operand and assign the C+= Ais equivalenttoC=C+ A
resultto left operand.
-= Subtract AND assignment operator, It subtracts
right operand from the left operandand assign | C-= Ais equivalenttoC=C - A
the result to left operand.
*= Multiply AND assignment operator, It
multiplies right operand with the left operand C*=AisequivalenttoC=C* A
and assign the result to left operand.
/= Divide AND assignment operator, It divides
left operand with the right operand and assign C/=AisequivalenttoC=C/A
the result to left operand.
%= Modulus AND assignment operator, It takes
modulus using two operands and assign the C %= Ais equivalenttoC=C % A
result to left operand.
<<= Left shift AND assignment operator. C<<=2issameasC=C<<?2
>>= Right shift AND assignment operator. C>>=2issameasC=C>>2
&= Bitwise AND assignment operator. C&=2issameasC=C&?2
N= Bitwise exclusive OR and assignmentoperator. [C*=2issameasC=C"2
= Bitwise inclusive OR and assignment operator. | C|=2issameas C=C|?2
Misc Operators

The following table lists some other operators that C++ supports.

Department of Mechatronics Engineering, NCERC, Pampady.

64

MRT 363 : OBJECT ORIENTED PROGRAMMING

Sr.No Operator & Description
1 sizeof
sizeof operator returns the size of a variable. For example, sizeof(a), where ‘a’ is integer, and
will return 4.
2 .
Condition ? X : Y
Conditional operator (?). If Condition is true then it returns value of X otherwise returns
value of .
3
Comma operator causes a sequence of operations to be performed. The value of the entire
comma expression is the value of the last expression of the comma-separated list.
4
. (dot) and -> (arrow)
Member operators are used to reference individual members of classes, structures, and
unions.
> Cast
Casting operators convert one data type to another. For example, int(2.2000) would return 2.
6 &
Pointer operator & returns the address of a variable. For example &a; will give actual
address of the variable.
7 *
Pointer operator * is pointer to a variable. For example *var; will pointer to a variable var.

Department of Mechatronics Engineering, NCERC, Pampady. 65

https://www.tutorialspoint.com/cplusplus/cpp_sizeof_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_conditional_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_comma_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_member_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_casting_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm

MRT 363 : OBJECT ORIENTED PROGRAMMING

Data Types available in C++:

1. Primary(Built-in) Data Types:
o character
o integer
o floating point
o boolean
o double floating point
o void

o wide character
2. User Defined Data Types:

o Structure
o Union
o Class

o Enumeration
3. Derived Data Types:

o Array
o Function
o Pointer

o Reference

Character Data Types
Data Type (Keywords) Description

char Any single character. It may include a letter,
a digit, a punctuation mark, or a space.

signed char Signed character.
unsigned char Unsigned character.
wchar_t Wide character.

Size

1 byte

1 byte

1 byte

2or4
bytes

Typical Range

-128 to 127 or 0 to 255

-128 to 127

0to 255

1 wide character

Department of Mechatronics Engineering, NCERC, Pampady.

66

MRT 363 : OBJECT ORIENTED PROGRAMMING

Integer Data Types

Data Type (Keywords) Description Size Typical Range
int Integer. 4 bytes -27147483648 to
2147483647
signed int Signed integer. Values may be negative, 4 bytes -2147483648 to
positive, or Zero. 2147483647
unsigned int Unsigned integer. Values are always 4 bytes 0 to 4294967295

positive or zero. Never negative.
short Short integer. 2 bytes -32768 to 32767

signed short Signed short integer. Values may be 2 bytes -32768 to 32767
negative, positive, or zero.

unsigned short Unsigned short integer. Values are always 2 bytes 0 to 65535
positive or zero. Never negative.

fong Long integer. 4 bytes -2147483648 to
2147483647

signed long Signed long integer. Values may be 4 bytes -2147483648 1o
negative, positive, or zero. 2147483647

unsigned fong Unsigned long integer. Values are always 4 bytes 0 to 4294967295

positive or zero. Never negative.

Floating-point Data Types

Data Type (Keywords) Description Size Typical Range
float Floating point number. There is no fixed 4 bytes +/-3.4e +/- 38 (~7
number of digits before or after the digits)

decimal point.

double Double precision floating point number. 8 bytes +/-1.7e +/-308 (~15
More accurate compared to float. digits)

long double Long double precision floating point 8 bytes +/-1.7e +/- 308 (~15
number. digits)

Boolean Data Type
Data Type (Keywords) Description Size Typical Range

bool Boolean value. It can only take one of two 1 byte true or false
values: true or false.

Department of Mechatronics Engineering, NCERC, Pampady. 67

MRT 363 : OBJECT ORIENTED PROGRAMMING

Enum Data Type

This is a user-defined data type having a finite set of enumeration constants. The keyword 'enum' is used to
create enumerated data type.

enum enum-name {list of names}var-list;

enum mca(software, internet, seo);

Typedef

It is used to create new data type. But it is commonly used to change existing data type with another name.

typedef [data_type] synonym;

or

typedef [data_type] new_data_type;

Example:

typedef int integer;
integer rollno;

A loop statement allows us to execute a statement or group of statements multiple times

A while loop statement repeatedly executes a target statement as long as a given condition is
true.

Syntax

The syntax of a while loop in C++is —

while(condition) {
statement(s);

}
Here, statement(s) may be a single statement or a block of statements. The condition may be
any expression, and true is any non-zero value. The loop iterates while the condition is true.

When the condition becomes false, program control passes to the line immediately following
the loop.

Department of Mechatronics Engineering, NCERC, Pampady. 68

MRT 363 : OBJECT ORIENTED PROGRAMMING

Flow Diagram

Here, key point of the while loop is that the loop might not ever run. When the condition is
tested and the result is false, the loop body will be skipped and the first statement after the while

loop will be executed.

Example
[Live Demo

#include <iostream>

using namespace std;

intmain () {

// Local variable declaration:

inta= 10;

/I while loop execution

while(condition)

{
}

conditional code ;

If condition
is true

code block If condition

is false

.

Department of Mechatronics Engineering, NCERC, Pampady.

http://tpcg.io/V7zrwx

MRT 363 : OBJECT ORIENTED PROGRAMMING

while(a<20){
cout<<"value ofa:" << a <<endl;

at+;

return O;

When the above code is compiled and executed, it produces the following result —

value of a: 10
value ofa: 11
value ofa: 12
value ofa: 13
value ofa: 14
value of a: 15
value ofa: 16
value ofa: 17
value of a: 18
value ofa: 19

A for loop is a repetition control structure that allows you to efficiently write a loop that needs
to execute a specific number of times.

Syntax

The syntax of a for loop in C++is —

for (init; condition; increment) {
statement(s);

Here is the flow of control n a for loop —

e Theinitstep is executed first, and only once. This step allows you to declare and initialize any loop

control variables. You are not required to put a statement here, as long as a semicolon appears.

e Nex, the condition is evaluated. If it is true, the body of the loop is executed. If it is false, the body

of the loop does not execute and flow of control jumps to the next statement just after the for loop.

e After the body of the for loop executes, the flow of control jumps back up to

the increment statement. This statement can be left blank, as long as a semicolon appears after the

Department of Mechatronics Engineering, NCERC, Pampady. 70

MRT 363 : OBJECT ORIENTED PROGRAMMING

condition.

e The condition is now evaluated again. If it is true, the loop executes and the process repeats itself
(body of loop, then increment step, and then again condition). After the condition becomes false, the

for loop terminates.

Flow Diagram

for(init; condition; increment)

{
b

conditional code ;

= condition

If condition
is true

code block If condition
is false

increment

Example

#include <iostream>

using namespace std;

intmain () {
/I for loop execution
for(inta=10; a<20;a=a+1){

cout<<"valueofa:" << a <<endl;

Department of Mechatronics Engineering, NCERC, Pampady. 71

MRT 363 : OBJECT ORIENTED PROGRAMMING

return 0;
}

When the above code is compiled and executed, it produces the following result —

value of a: 10
value ofa: 11
value ofa: 12
value ofa: 13
value ofa: 14
value of a: 15
value of a: 16
value ofa: 17
value ofa: 18
value ofa: 19

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to
execute at least one time.

Syntax

The syntax of a do...while loop in C++is —

do {
statement(s);

}

while(condition);

Notice that the conditional expression appears at the end of the loop, so the statement(s) in the
loop execute once before the condition is tested.

If the condition is true, the flow of control jumps back up to do, and the statement(s) in the loop
execute again. This process repeats until the given condition becomes false.

Flow Diagram

Department of Mechatronics Engineering, NCERC, Pampady. 72

MRT 363 : OBJECT ORIENTED PROGRAMMING

do {
conditional code ;
} while (condition)

code block

If condition
is true

condition

If condition
is false

Example

#include <iostream>

using namespace std;

intmain () {
/I Local variable declaration:

inta= 10;

/I do loop execution

do {
cout <<"value ofa:" << a <<endl;
a=a+l,

}while(a<20);

return 0;

Department of Mechatronics Engineering, NCERC, Pampady.

73

MRT 363 : OBJECT ORIENTED PROGRAMMING

When the above code is compiled and executed, it produces the following result —

value ofa: 10
value ofa: 11
value of a: 12
value of a: 13
value ofa: 14
value of a: 15
value ofa: 16
value ofa: 17
value of a: 18
value ofa: 19

Department of Mechatronics Engineering, NCERC, Pampady.

74

MRT 363 : OBJECT ORIENTED PROGRAMMING

MODULE Ii

Objects -pointers and objects -constant objects -nested classes-local classes-Constructors
-default constructor -Parameterized constructors -Constructor with dynamic allocation -
copy constructor -destructors.

What is Class?

A class is a user defined data type that allowsus to bind data and its
associated functions together as a single unit. Thus class provides the
facility of data encapsulation.

Class provides the facility of data hiding using the concept of visibility
mode such as public, private and protected.

Once a class is defined we can create an object of the class to access
variablesand functions defined inside the class.

Syntax:
class Class_Name

{

Private:

Data-Type Variable Name;

Function declaration or Function Definition;
Public:

Data-Type Variable Name;

Function declaration or Function Definition;

};

Class can be created using the class keyword. The class definition starts with curly
bracket and ends with curly bracket followed by semicolon.

We can declare variables as well as functions inside the curly bracket as shown in
the syntax. The variables defined inside class are known as data memberand the
function declared inside the class are known as member function.

In order to provide data hiding facility class provides the concept of visibility
mode such as private, public or protected. If you don’t specify any visibility
mode for the member of the class then by default all the members of the class

Department of Mechatronics Engineering, NCERC, Pampady. 75

MRT 363 : OBJECT ORIENTED PROGRAMMING

are considered as private.

The data member and member function declared as a public can be accessed
directly using the object of the class. But the data member and member function
declared as private cannot be accessed directly using the object of the class.

Example:

class test

{

inta, b;

public:

void input();

{

cout<<"EnterValueofaand b"";
cin>>a>>b;

}
void output ()

{

COut<<lIA:II<<a<<IIB:II<<b;

}
h

Create Object in C++:There are two different methods for creating objects

of the class:
(1) We can create object at the time of specifying a class after the closing curly
bracket.

Example:
Class test

{

int a,b;
public:

void input ();
void ouput ();
}1,t2,t3;

Department of Mechatronics Engineering, NCERC, Pampady. 76

MRT 363 : OBJECT ORIENTED PROGRAMMING

Here, t1, t2 and t3 are the objects of class test.

(2) We can create object inside the main function using name of the

class.

The general syntax for creating object inside main function is as below:
Class_Name Object_Name;

Example:

Test t1, t2, t3;

Here, t1, t2 and t3 are the objects of class test.

How to Access Class Members?

The data member and member function declared as a public can be accessed
directly using the object of the class. But the data member and member function
declared as private cannot be accessed directly using the object of the class.

We can access private member of the class using public member of the class.
The general syntax for accessing public member using object is given below:
Object_Name. Data_Member = value;

Object_Name. Member_Function (Argument_L.ist);

Example:

T1. input ();

T1. output ();

Example:
class Test
{

int b;
Public:

int a;

void inputb()
{

b=20;

}

};

int main()

Department of Mechatronics Engineering, NCERC, Pampady. 77

MRT 363 : OBJECT ORIENTED PROGRAMMING

{
Testtl;

t1.a=10; //works because a is public

t1.b=20; //error because b is private

t1.inputb (); //works because inputb () is public
return 0;

¥
POINTERS AND OBJECTS:

pointers

Similar to C, in C++, variables are used to hold data values during program
execution. When declared, every variable occupies certain memory
locations. It is possible to access and display the address of the memory
location of a variable using ‘& operator. Memory is arranged in series of
bytes. These series of bytes are numbered from zero onward. The numbel
specified to a cell is known as memory address. A pointer variable stores
the memory address of any type of variable. The pointer variable and
normal variable should be of the same type. The pointer is denoted by

A byte is nothing but a combination of eight bits, as shown in Figure. The
binary numbers 0 and 1 are known as bits. Each byte in the memory is
specified with a unique (matchless) memory address. The memory address
is an unsigned integer starting from zero to uppermost addressing capacity
of the microprocessor. The number of memory locations pointed by a
pointer depends on the type of the pointer. The programmer should not
worry about the addressing procedure of the variables. The compiler takes
care of this. The pointers are either 16 bits or 32 bits long.

—rl “Value stored in binary forml

00110110
Memory
addresses
L—» | 1002 1003 1004 1005 1006 1007

Fig: Memory representation

Department of Mechatronics Engineering, NCERC, Pampady. 78

MRT 363 : OBJECT ORIENTED PROGRAMMING

The allocation of memory during program run time is called dynamic

memory allocation. Such a type of memory allocation is essential for data

structure, and it is efficiently handled by pointers. Arrays are another

reason for using pointers. Arrays are used to store more values. Actually,
the name of the array is a pointer. Command-line arguments are one more
reason for using pointers. These arguments are passed to programs and

are stored in an array of pointers argv [].

POINTERS

operator.

A pointer iIs a memory variable that stores a memory address. Pointers
can have any name that is legal for other variables, and it is declared in
the same fashion as other variables, but it is always denoted by “*’

Features Of Pointers

1. Pointers save memory space.

2. Execution time with pointers is faster, because data are

manipulated with the address, that is, direct access to memory

location.

3. Memory is accessed efficiently with the pointers. The pointer
assigns as well as releases the memory space. Memory is
dynamically allocated.

4. Pointers are used with data structures. They are useful for
representing two-dimensional and multi-dimensional arrays.

5. We can access the elements of any type of array, inrespective of its

subscript range.
6. Pointers are used for file handling.

7. Pointers are used to allocate memory in a dynamic manner.

8. In C++, a pointer declared to a base class could access the object

of a derived class. However, a pointer to a derived class cannot

access the object of a base class. The compiler will generate an
error message “cannot convert ‘A* to B*," where A is the base class
and B is the derived class.

Department of Mechatronics Engineering, NCERC, Pampady.

79

MRT 363 : OBJECT ORIENTED PROGRAMMING

Pointer Declaration

Pointer variables can be declared as follows:

Example
int *x;
float *f;
char *y;

1. In the first statement, ‘%’ is an integer pointer, and it informs the
compiler that it holds the address of any integer variable. In the
same way, ‘T" is a float pointer that stores the address of any
float variable, and 'y' is a character pointer which stores the
address of any character variable.

2. The indirection operator (*) is also called the dereference operator.
When a pointer is dereferenced, the value at that address stored by

the pointer is retrieved.

3 . ——
Pointer Declaration

= Pointers are declared as follows:

<type> * variable_name ;

e.
int * xPtr: // xPtr is a pointer to data of type integer

char ¥ cPtr; //cPtr is a pointer to data of type character

void * yPtr: // yPtr is a generic pointer,
// represents any type

Department of Mechatronics Engineering, NCERC, Pampady. 80

MRT 363 : OBJECT ORIENTED PROGRAMMING

13.1 Write a program to display the address of the variable.

#include<iostream.h>
#include<conio.h>
main()
{
intn;
clrscr();
cout<<"Enter a Number = ";
cin>>n;
cout<<"Value of n = "<<n;
cout<<"Address of n=" <<(unsigned)&n;
getche();

OUTPUT

Enter a Number =10
Valueofn=10
Address of n=4068

Explanation: The memory location of a variable is system dependent.
Hence, the address of a variable cannot be predicted immediately. In the
above example, the address of the variable ‘n’ that is observed is 4068. In
Figure, three blocks are shown to be related to the above program. The first
block contains the variable name. The second block represents the value of
the variable. The third block is the address of the variable ‘n,” where 10 is
stored. Here, 4068 is the memory address. The address of the variable
depends on various things; for instance, memory model, addressing

Ischeme. and present system settings.

Department of Mechatronics Engineering, NCERC, Pampady. 81

MRT 363 : OBJECT ORIENTED PROGRAMMING

“Variable narme |

10_}——[WValue of the variable |

Q4068 Address of the variablel

Fig: Vvariable and its memory address

C++ allows you to have pointers to objects. The pointers pointing to objects are referred to as Object
Pointers.

C++ Declaration and Use of Object Pointers

Just like other pointers, the object pointers are declared by placing in front of a object pointer's name. It
takes the following general form :

class-name * object-pointer ;

where class-name is the name of an already defined class and object-pointer is the pointer to an object of
this class type. For example, to declare ptr as an object pointer of Sample class type, we shall write

Sample *optr ;

where Sample is already defined class. When accessing members of a class using an object pointer, the
arrow operator (->) is used instead of dot operator.

Pointer to Object

In C++ you can declare a pointer that contains the address of the object of type class.
Suppose we have created a class named base as shown below:
class Base

{

public:

int x;

void display ()

{

cout<<"X=""<<x<<endl;

}

b

Now you can declare a pointer that contains the address of the object of class base as shown below:

Department of Mechatronics Engineering, NCERC, Pampady. 82

MRT 363 : OBJECT ORIENTED PROGRAMMING

Base *ptr; // declare a pointer of base class

Base B1; // declare an object of base class

Ptr = &B1; // assign address of object bl to base class pointer

Using this pointer you can access the public member of the base class as shown below:
ptr->x = 10;

ptr->display ();

#include <iostream.h>
class Base

{

public:

int x;

void display ()

{
cout<<"X="<<x<<endl;
}

+

int main ()

{

Base B1;

Base *ptr;

ptr = &B1;

ptr->x = 10;
ptr->display();

}

Output:

X=10

Department of Mechatronics Engineering, NCERC, Pampady.

83

MRT 363 : OBJECT ORIENTED PROGRAMMING

Pointer To Object

Similar to variables, objects also have an address. A pointer can point to a
specified object. The following program illustrates this:

13.11 Write a program to declare an object and pointer to the class.
Invoke the member functions using pointer.

#include<iostream.h=
#include<conio.h=
class Bill
{
int qty:
float price;
float amount;
public :
void getdata (int a, float b, float c)
{

qty=a;
price=b;
amount=c;
¥
void show()
{
cout=<"Quantity : " <<qgty <<“\n";
cout<=<"Price : " =<price <=<"\n";
cout<<"Amount : " <<amount <<"“\n";
¥
b
int main()

{

1

clrscr();

Bill s;

Bill *ptr =&s;
ptr-=getdata(45,10.25,45*%10.25);
*ptr).show();

return O]

Department of Mechatronics Engineering, NCERC, Pampady.

84

MRT 363 : OBJECT ORIENTED PROGRAMMING

}

OUTPUT

Quantity : 45
Price : 10.25
Amount : 461.25

Explanation: In the above program, the class Bill contains two float and one
int members. The class Bill also contains the member function getdata()
and show() to read and display the data. In function main(), s is an object of
class Bill, and ptr is a pointer of the same class. The address of object s is
assigned to pointer ptr. Using pointer ptr with arrow operator (->) and dot
operator (.), members and functions are invoked. The statements used for
invoking functions are as given below.

ptr->getdata (45,10.25,45%10.25);
(*ptr).show();

The const Objects

In the previous chapter, we have studied the constant functions. The
const declared functions do not allow the operations that alter the values.
In the same fashion, we can also make the object constant by the
keyword const. Only constructor can initialize data member variables of
constant object. The data member of constant objects can be read-only
and any effort to alter values of variables will generate an error. The data
members of constant object are also called read-only data members. The
constant object can access only constant functions. If constant object
tries to invoke a non-member function, an error message will be displayed.

Department of Mechatronics Engineering, NCERC, Pampady. 85

MRT 363 : OBJECT ORIENTED PROGRAMMING

9.12 Write a program to declare constant object. Also, declare constant

member function and display the contents of member variables.
#include<iostream.hs>
#include<conio.hs>

class ABC

{
int a;
public:
ABC (int m)
{ a=m; }

vold show() const
{ cout<<“a="<<a; }

}i
int main()
{

clrscr () ;

const ABC x(5) ;

¥x.show () ;

return 0;

ouTPUT

A=5

Explanation: In the above program, class ABC is declared with one
member variable and one constant member function show(). The
constructor ABC is defined to initialize the member variable. The show()
function is used to display the contents of member variable. In main(), the
object x is declared as constant with one integer value. When object is
created, the constructor is executed and value is assigned to data
member. The object x invokes the member function show().

Nested Classes in C++

Anestedclassis a classwhich is declared in anotherenclosing class. A nested class is amember and as such hasthe
same accessrights as any other member. The members ofan enclosing class haveno specialaccess to members ofa
nestedclass; theusual access rules shall be obeyed.

Department of Mechatronics Engineering, NCERC, Pampady. 86

MRT 363 : OBJECT ORIENTED PROGRAMMING

Forexample, program1 compiles without any errorand program2 fails in compilation.

Program 1
#include<iostream>

using namespace std;
/* start of Enclosing class declaration */
class Enclosing {
intx
/* start of Nested class declaration */
class Nested{
inty;
void NestedFun(Enclosing *e){
cout<<e->x; //works fine:nestedclass canaccess
[private members of Enclosingclass
}
}; // declaration Nested class ends here
}; // declaration Enclosing class ends here
int main()
{1}
LOCAL CLASS AND NESTED CLASS

A class which is declared inside a function is called a local class. A local class is accessible only
within the function it is declared. Following guidelines should be followed while using local classes:

» Local classes can access global variables only along with scope resolution operator.

= Local classes can access static variables declared inside a function.

= Local classes cannot access auto variables declared inside a function.

= Local classes cannot have static variables.

= Member functions must be defined inside the class.

* Private members of the class cannot be accessed by the enclosing function if it is not declared as
a friend function.

Below example demonstrates a local class:

Department of Mechatronics Engineering, NCERC, Pampady. 87

MRT 363 : OBJECT ORIENTED PROGRAMMING

#include<iostream>

using namespace std;

const float Pl = 3.1415;

int main()

{

class Circle

{public:

intr;

void area()

{cout<<“Area of circle is: “<<(::PI*r*r);
}

void set_radius(int radius)

{

r = radius;

33

Circle c;

c.set_radius(10);

c.area();

return 0;}

Output of the above program is as follows:

Area of circleis: 314.15

C++ allows programmers to declare one class inside another class. Such classes are called nested
classes. When a class B is declared inside class A, class B cannot access the members of class A. But

class A can access the members of class B through an object of class B. Following are the properties
of a nested class:

»= Anested class is declared inside another class.
»= The scope of inner class is restricted by the outer class.
= While declaring an object of inner class, the name of the inner class must be preceded by the

Department of Mechatronics Engineering, NCERC, Pampady. 88

MRT 363 : OBJECT ORIENTED PROGRAMMING

outer class name and scope resolution operator.

Constructorin C++

Constructor is a member function of the class.

It is called special member function because the name of the constructor is same as
name of the class.

Constructor is used to construct the values for the data member of the class
automatically when the object of class is created.

Like other member function there is no need to call constructor explicitly. It is
invoked automatically each time the object of its class is created.

Every class having at least one constructor defined in it. If you do not define any
constructor in the class then compiler will automatically create a constructor inside
the class and assigns default value (0) to the data member of the class.

Constructors are special class functions which performs initialization of every object. The Compiler
calls the Constructor whenever an object is created. Constructors iitialize values to object members
after storage is allocated to the object.

public:

A(); /[Constructor
1
While defining a contructor you must remeber that the name of constructor will be same as the name
of the class, and contructors never have return type.

Constructors can be defined either inside the class definition or outside class definition using class
name and scope resolution :: operator.

public:
A(); //Constructor declared

I

A::A() /I Constructor definition
{

Department of Mechatronics Engineering, NCERC, Pampady. 89

MRT 363 : OBJECT ORIENTED PROGRAMMING

Types of Constructors

Constructors are of three types :

1. Default Constructor
2. Parameterized Constructor

3. Copy Constructor

Default Constructor
Default constructor is the constructor which doesn't take any argument. It has no parameter.

Syntax :
class_name ()

{ Constructor Definition }

Example :

class Cube

{

int side;
public:
Cube()

side=10;

cout << c.side;

}
Output:10

In this case, as soon as the object is created the constructor is called which initializes its data

Department of Mechatronics Engineering, NCERC, Pampady. 90

MRT 363 : OBJECT ORIENTED PROGRAMMING

members.

A default constructor is so important for initialization of object members, that even if we do not
define aconstructor explicitly, the compiler will provide a default constructor implicitly.

int side;

¥

int main()
{
Cube c;

cout << c.side;
}
Output:0

In this case, default constructor provided by the compiler will be called which will initialize the
object data members to default value, that will be 0 in this case.

Parameterized Constructor

These are the constructors with parameter. Using this Constructor you can provide different values to
data members of different objects, by passing the appropriate values as argument.

Example :

int side;

Cube(int x)

int main()

{
Cube c1(10);

Cube ¢c2(20);

Cube c3(30);

Department of Mechatronics Engineering, NCERC, Pampady. 91

MRT 363 : OBJECT ORIENTED PROGRAMMING

cout << cl.side;

cout << c2.side;

cout << c3.side;

}
OUTPUT : 10 20 30

By using parameterized construcor in above case, we have initialized 3 objects with user defined
values. We can have any number of parameters in a constructor.

Copy Constructor

These are special type of Constructors which takes an object as argument, and is used to copy values
of data members of one object into other object.

Copy Constructorin C++

Copy Constructor is a type of constructor which is used to create a copy of an already existing object
of a class type. Itis usually of the form X (X&), where X is the class name.he compiler provides a
default Copy Constructor to all the classes.

Syntax of Copy Constructor

Classname(const classname & objectname)

{

As it is used to create an object, hence it is called a constructor. And, it creates a new object, which is
exact copy of the existing copy, hence it is called copy constructor.

copy of object
crearted

MNew Object

Copy COnNnstructor

Department of Mechatronics Engineering, NCERC, Pampady. 92

MRT 363 : OBJECT ORIENTED PROGRAMMING

Below is a sample program on Copy Constructor:
#include<iostream>
using namespace std;

class Samplecopyconstructor

{

private:
intx y;
public:
Samplecopyconstructor(int XL, int y1)

cout<<x<<" "<<y<<endl;

o

int main()

{

Samplecopyconstructor obj1(10, 15);
Samplecopyconstructor obj2 =obj1;
cout<<"Normal constructor:";
objl.display();

cout<<"Copy constructor:";
obj2.display();

return 0;

}

Output:

Normal constructor : 10 15

Department of Mechatronics Engineering, NCERC, Pampady. 93

MRT 363 : OBJECT ORIENTED PROGRAMMING

Copy constructor : 10 15

When is copy constructor called?

In C++, a Copy Constructor may be called in following cases:

1. When an object of the class is returned by value.

2. When an object of the class is passed (to a function) by value as an argument.
3. When an object is constructed based on another object of the same class.

4. When compiler generates a temporary object.

It is however, not guaranteed that a copy constructor will be called in all these cases, because the C++
Standard allows the compiler to optimize the copy away in certain cases, one example being the return
value optimization (sometimes referred to as RVO).

When is user defined copy constructor needed?

If we don’t define our own copy constructor, the C++ compiler creates a default copy constructor for each
class which does a member wise copy between objects. The compiler created copy constructor works fine
in general. We need to define our own copy constructor only if an object has pointers or any run time
allocation of resource like file handle, a network connection..etc.

Constructor Overloading

Just like other member functions, constructors can also be overloaded. Infact when you have both
default and parameterized constructors defined in your class you are having Overloaded
Constructors, one with no parameter and other with parameter.

You can have any number of Constructors in a class that differ in parameter list.

int rollno;

Department of Mechatronics Engineering, NCERC, Pampady. 94

http://en.wikipedia.org/wiki/Return_value_optimization
http://en.wikipedia.org/wiki/Return_value_optimization

MRT 363 : OBJECT ORIENTED PROGRAMMING

stringname;

public:
Student(int x)

{

rollno=x;
name="None";

}
Student(int x, string str)

{
rollno=x ;
name=str ;
}
Vi

int main()

{
Student A(10);

Student B(11,"Ram");
}

In above case we have defined two constructors with different parameters, hence overloading the
constructors.

One more important thing, if you define any constructor explicitly, then the compiler will not provide
default constructor and you will have to define it yourself.

In the above case if we write StudentS; in main(), it will lead to a compile time error, because we
haven't defined default constructor, and compiler will not provide its default constructor because we
have defined other parameterized constructors.

Destructors

Destructor is a special class function which destroys the object as soon as the scope of object ends.
The destructor is called automatically by the compiler when the object goes out of scope.

The syntax for destructor is same as that for the constructor, the class name is used for the name of
destructor, with a tilde ~ sign as prefix to it.

Department of Mechatronics Engineering, NCERC, Pampady. 95

MRT 363 : OBJECT ORIENTED PROGRAMMING

~A();
I8

Destructors will never have any arguments.

Example to see how Constructor and Destructor is called

cout << "Constructorcalled";

}

~A()
{

cout << "Destructor called";
3
1

int main()
{
Aobjl; //Constructor Called
int x=1
1{69)
{
Aobj2; // Constructor Called
} /I Destructor Called forobj2

} /I Destructor called for obj1

Single Definition for both Default and Parameterized Constructor

In this example we will use default argument to have a single definition for both defualt and
parameterized constructor.

class Dual

Department of Mechatronics Engineering, NCERC, Pampady. 96

MRT 363 : OBJECT ORIENTED PROGRAMMING

int a;
public:
Dual(int x=0)

int main()

{
Dual obj1;

Dual 0bj2(10);
}

Here, in this program, a single Constructor definition will take care for both these object
initializations. We don't need separate default and parameterized constructors.

The constructor that does not acceptany argument is known as default constructor.
Following are important characteristics of Constructor:

(1) It is called automatically when object of its class is created.

(2) It does not return any value.

(3) It must be defined inside public section of the class.

(4) 1t can have default arguments.

(5) Inheritance of constructor is not possible.

(6) It can not virtual.

Disadvantage of default constructor is that eachtime an object is created it will
assign same default values to the data members of the class. It is not possible to
assign differentvalues to the data members for the differentobject of the class
using default constructor.

Parameterized Constructor

Disadvantage of default constructor isthat each time an objectis created it will
assign same defaultvaluesto the data members of the class.

However sometimes it is required to assign differentvaluesto the data members for
the differentobject of the class. This can be accomplished using the concept of
parameterized constructor.

The constructorthataccepts parametersasan argumentis called Parameterized
constructor.

Department of Mechatronics Engineering, NCERC, Pampady. 97

MRT 363 : OBJECT ORIENTED PROGRAMMING

Parameterized Constructor can be defined inside class as shown below: Class

Rectangle

{

int Height, Width;
public:
Rectangle (int h, intw)
{

Height = h;

Width = w;

}

}

Parameterized Constructor can be defined outside class as shown below:

Class Rectangle

{

int Height, Width;

public:

Rectangle (inth, int w);

}

Rectangle :: Rectangle (int h, int w)
{

Height = h;

Width = w;

}

Now when you create an object of the class Rectangle as shown below:
Rectangle R1;

It will notinvoke parameterized constructor butit will invoke de fault constructor
and assigns defaultvalue 0 to its data member Heightand Width.

In order to invoke parameterized constructor we need to pass arguments while
creating object. We can passarguments using two different methods:

(1) Implicit:

Rectangle R1 (10, 20);

It will assign value of 10to Heightand value of 20 to Width.

(2) Explicit:

Rectangle R2 = Rectangle (30, 40);

It will assign value of 30 to Heightand value of 40 to Width.

Copy Constructor

Department of Mechatronics Engineering, NCERC, Pampady. 98

MRT 363 : OBJECT ORIENTED PROGRAMMING

Sometimes it is required to copy the value of data member of one objectinto
another object while creating it. This can be accomplished using the concept of
copy constructor.

The constructorthataccepts referenceto the objectasan argumentis known as
copy constructor.

Copy Constructor can be defined inside class as shown below:

Class Rectangle

{

int Height, Width;
public:

Rectangle (Rectangle &r)
{

Height = r.Height;
Width = r.Width;

}

}

Copy Constructor can be defined outside classas shown below:

Class Rectangle

{

int Height, Width;

public:

Rectangle (Rectangle &r);

}

Rectangle :: Rectangle (Rectangle &r)
{

Height = r.Height;
Width = r.Width;
}

In order to invoke copy constructor we need to pass objectas an arguments while
creating object. We can pass arguments using two different methods:

(1) Implicit:

Rectangle R2 (R1);

It will assign value of data member of objectR1 into data member of object R2.
(2) Explicit:

Rectangle R2 = Rectangle (R1);

It will assign value of data member of objectR1 into data member of object R2.

Department of Mechatronics Engineering, NCERC, Pampady. 99

MRT 363 : OBJECT ORIENTED PROGRAMMING

Constructor with dynamic allocation

Dynamically allocated array in the constructor.

Constructors can be used to initialize member objects as well as allocate memory. This can allow an object to
use only thatamount of memory thatis required immediately. This memory allocation at run-time is also
known as dynamic memory allocation. The new operatoris used for this purpose.

Dynamic Memory Allocation for Objects

Objects are no different from simple data types. For example, consider the following code
where we are going to use an array of objects to clarify the concept —

#include <iostream>

using namespace std;

class Box{
public:

Box() {

cout <<"Constructor called!" <<endl;
}
~Box() {

cout <<"Destructor called!" <<endl;

I
intmain() {
Box *myBoxArray = new Box[4];

delete [myBoxArray; // Delete array

Department of Mechatronics Engineering, NCERC, Pampady. 100

http://tpcg.io/qxQQ36

MRT 363 : OBJECT ORIENTED PROGRAMMING

return 0;
}

If you were to allocate an array of four Box objects, the Simple constructor would be called four
times and similarly while deleting these objects, destructor will also be called same number of
times.

If we compile and run above code, this would produce the following result —

Constructor called!
Constructor called!
Constructor called!
Constructor called!
Destructor called!
Destructor called!
Destructor called!
Destructor called!

Department of Mechatronics Engineering, NCERC, Pampady. 101

MRT 363 : OBJECT ORIENTED PROGRAMMING

MODULE I11

Operatoroverloading - overloading through friend functions - overloading the
assignment operator - type conversion - explicit constructor.

Operator Overloading in C++

Operator overloading is a type of polymorphism in which a single operator is overloaded to give user
defined meaning to it. Operator overloading provides a flexibility option for creating new definitions
of C++ operators. There are some C++ operators which we can't overload.

The lists of such operators are:

Class member access operator (. (dot), .* (dot-asterisk))
Scope resolution operator (:)
Conditional Operator (?:)

Size Operator (sizeof)

e These are the lists of few excluded operators and are very few when compared to large sets of
operators which can be used for the concept of operator overloading. An overloaded operator
is used to perform an operation on the user-defined data type. Let us take an example of the
addition operator (+) operator has been overloaded to perform addition on various variable

types, like for integer, floating point, String (concatenation) etc.
e syntax

e returntype className :: operatorop (arg_list)
e {

e //Function body;

s }

e Here, the return type is the type of value returned by the specified operation and op is the
operator being overloaded.
In C++, we can make operators to work foruserdefined classes. Forexample, we can overload an operator “+’ in a

class like String so that we can concatenate two strings by just using +.
Otherexample classes where arithmetic operators may be overloaded are Complex Number, Fractional Number, Big

Department of Mechatronics Engineering, NCERC, Pampady. 102

MRT 363 : OBJECT ORIENTED PROGRAMMING

Integer, etc.

Write the rules for overloading the operators.

0 Only existing operators can be overloaded. New operators cannot be created.

0 The overloaded operator must have atleast one operand that is of user defined type.

0 The basic meaning of an operator cannot be changed. That is the plus operator cannot be used to
subtract one value fromthe other.

0 Overloaded operator follow the syntaxrules of the original operators. They cannot be overridden.
0 There are some operators that cannot be overloaded. They are Size of, . ,: ;,?..

o Friend function cannot be used to overload certain operators (=,(),[],->).However member
functions can be used to overload them.

0 Unary operators, overload by means of a member function, take no explicit arguments and return
no explicit values,but,those overloaded by means of a friend function, take one reference

argument.

o0 Binary operators overloaded through a member function take one explicit argument and those
which are overloaded through a friend function take two explicit arguments.

0 When using binary operator overloaded through a member function, the left hand operand must be
an object of the relevant class.

o0 Binary arithmetic operators such as +,-,*,and / must explicitly return a value. They must not

attempt to change their own arguments.

A simple and complete example

Department of Mechatronics Engineering, NCERC, Pampady.

103

MRT 363 : OBJECT ORIENTED PROGRAMMING

#include<iostream>

using namespace std;

class Complex{
private:
int real, imag;
public:
Complex(int r = 0, int i =0)
{
real =r;

imag =i;

/I This is automatically called when '+'is used with
/I betweentwo Complexobjects
Complexoperator + (Complex obj) {

Complex res;

res.real=real + obj.real;

res.imag = imag + obj.imag;

return res;

}

void print() { cout <<real<<™ +i" <<imag <<endl; }

int main()
{
Complexcl(10, 5), c2(2, 4);

Department of Mechatronics Engineering, NCERC, Pampady.

104

MRT 363 : OBJECT ORIENTED PROGRAMMING

Complexc3=cl+ c2;// Anexample call to "operator+"

c3.print();

Output:

12 +1i9

UNARY OPERATOR OVERLOADING

An Unary operator is an operator that operates on a single operand and returns a new value.

To write a program to find the complex numbers using unary operator overloading.
Unary operators:

Increment (++) Unary operator.
Decrement (--) Unary operator.
The minus (-) unary.

The logical not (!) operator.

Unary Operator Overloading Algorithm/Steps:

Step 1: Start the program.

Step 2: Declare the class.

Step 3: Declare the variables and its member function.

Step 4: Using the function getvalue() to get the two numbers.

Step 5: Define the function operator ++ to increment the values

Department of Mechatronics Engineering, NCERC, Pampady. 105

MRT 363 : OBJECT ORIENTED PROGRAMMING

Step 6: Define the function operator - -to decrement the values.

Step 7: Define the display function.

Step 8: Declare the class object.

Step 9: Call the function getvalue()

Step 10: Call the function operator ++() by incrementing the class object and call the function
display.

Step 11: Call the function operator - -() by decrementing the class object and call the function
display.

Step 12: Stop the program.

Simple Program for Unary Operator Overloading Program

#include<iostream.h>

#include<conio.h>

class complex{
inta, b,c;

public:

complex() {
}

void getvalue() {
cout <<"Enterthe Two Numbers:";

cin>> a>>b;

void operator++() {

a=++a;

Department of Mechatronics Engineering, NCERC, Pampady.

106

MRT 363 : OBJECT ORIENTED PROGRAMMING

b= ++b;

void operator--() {
a=--a;

= --h;

void display() {

cout<<a << "+\t"<<b<<"|"<<endl;

void main() {

clrscr();

complexobj;

obj.getvalue();

obj++;

cout <<"Increment ComplexNumber\n";
obj.display();

obj--;

cout <<"Decrement ComplexNumber\n";
obj.display();

getch();

Sample Output

Enterthe two numbers: 36
Increment Complex Number
4+ 7i

Decrement Complex Number

Department of Mechatronics Engineering, NCERC, Pampady.

107

MRT 363 : OBJECT ORIENTED PROGRAMMING

3+ 6i

BINARY OPERATOR OVERLOADING

To write a program to add two complex numbers using binary operator overloading.

Binary Operator Overloading Algorithm/Steps:

Step 1: Start the program.

Step 2: Declare the class.

Step 3: Declare the variables and its member function.

Step 4: Using the function getvalue() to get the two numbers.

Step 5: Define the function operator +() to add two complex numbers.
Step 6: Define the function operator —()to subtract two complex numbers.
Step 7: Define the display function.

Step 8: Declare the class objects objl,0bj2 and result.

Step 9: Call the function getvalue using objl and obj2

Step 10: Calculate the value for the object result by calling the function operator + and
Step 11: Call the display function using objl and obj2 and result.

Step 12: Return the values.

Step 13: Stop the program.

Binary Operator Overloading Example Program

#include<iostream.h>

#include<conio.h>

class complex{

operator -.

Department of Mechatronics Engineering, NCERC, Pampady.

108

MRT 363 : OBJECT ORIENTED PROGRAMMING

inta, b;

public:

void getvalue() {

cout <<"Enterthe value of ComplexNumbers a,b:";

cin>> a>>b;

complex operator+(complexob) {
complext;
ta=a+ob.g;
tb=b +ob.b;

return (t);

complex operator-(complexob) {
complext;
ta=a-ob.a;
tb=b-ob.b;

return (t);

void display() {

COUt<<a<<"+"<<b << "i"<<"\n";

void main() {
clrscr();

complexobjl, obj2, result, resultl;

objl.getvalue();
obj2.getvalue();

Department of Mechatronics Engineering, NCERC, Pampady.

109

MRT 363 : OBJECT ORIENTED PROGRAMMING

result=o0bjl+ obj2;
resultl=objl- obj2;

cout <<"Input Values:\n";
objl.display();
obj2.display();

cout <<"Result:";
result.display();
resultl.display();getch();

Sample Output:

Enterthe value of Complex Numbers a, b
4 5

Enterthe value of Complex Numbers a, b
2 2

Input Values

4+ 5i

2+ 2

Result

6+ 7i

2+ 3i

Department of Mechatronics Engineering, NCERC, Pampady.

110

MRT 363 : OBJECT ORIENTED PROGRAMMING

10.9 Write a program to overload unary operator using friend function.

#include<iostream.h=>
#include<constream.h>

class complex

{

Overloading with friend Function

The friend functions are more useful in operator overloading. They offer
better flexibility, which is not provided by the member function of the
class. The difference between member function and friend function is that
the member function takes argument explicitly. On the contrary, the friend
function needs the parameters to be explicitly passed. The syntax of
operator overloading with friend function is as follows:

friend return-type operator operator-symbol (variablel, variable2)
{

statementl;
statement?2;

The keyword friend precedes functionuplototype declaration. It must be
written inside the class. The function can be defined inside or outside the
class. The arguments used in friend function are generally objects of the
friend classes. A friend function is similar to normal function; the only
difference being that friend function can access private member of the
class through the objects. friend function has no permission to access
private members of a class directly. However, it can access the private
members through objects of the same class.

float real, imag;
public:

complex () // zero argument constructor

{

real=imag=0;

Department of Mechatronics Engineering, NCERC, Pampady. 111

MRT 363 : OBJECT ORIENTED PROGRAMMING

I

comp ez (float », float 4) v
two argument construcotorr

i

real=x;
imag=41i ;

Friemnd complex operator -— { complezxx ol
{

o . real=—-9<oc.xr=eal ;

< L Admag=—-—< . imac ;

rretuarn o

by

wroid displass ()

coulut=""“"nmn Real: " «s=real ;

coulto<"%W1mn Imag: ™ <<imadg;

b

T

wrodid madir ()

clrscx () ;

complex cl(l1.5,2.5),c2;
cl.displav () ;

cZ2=-cl;

cout=<"n'n After Negation “n";
c2Z.displayw () ;

OuUTrerur

Real : 1.5

Imag : 2.5

After MNMegation

Real : -1.5

ImagE 2 -2.5
Explanation: In the abowve program, operator — is overloaded using friend
function. The operator function is defined as friend. The statement
c2=—c1 invokes the operator function. This statement also returns the
negated values of c1 without affecting actual value of ¢c1 and assigns it to

object c2.

The negation operation can also be used with an object to alter its own
data member variables. In such a case, the object itself acts as a source
and destination object. This can be accomplished by sending reference of

object. The following program illustrates this.

Assignment operator in C++

1. Assignment Operator is Used to assign value to an variable.

2. Assignment operator is denoted by equal to sign.

Department of Mechatronics Engineering, NCERC, Pampady. 112

MRT 363 : OBJECT ORIENTED PROGRAMMING

3. Assignment operator have Two values L-Value and R-value. Operator copies R-Value into
L-Value.

4. Itis a binary operator.

C++ Overloading Assignment Operator

1. C++ Overloading assignment operator can be done in object oriented programming.

2. By overloading assignment operator, all values of one object (i.e instance variables) can be
copied to another object.

3. Assignment operator must be overloaded by a non-static member function only.

4. If the overloading function for the assignment operator is not written in the class, the

compiler generates the function to overload the assignment operator.

Syntax
Return_Type operator = (const Class_Name &)

Way of overloading Assignment Operator

#include<iostream>
using namespace std;
class Marks
{
private:
int ml;
int m2;
public:

//Default constructor
Marks() {
ml =0;

Department of Mechatronics Engineering, NCERC, Pampady. 113

MRT 363 : OBJECT ORIENTED PROGRAMMING

m2 =0;
}
// Parametrised constructor
Marks(int i, int j) {
ml =i;
m2 = J;
}
/I Overloading of Assignment Operator
void operator=(Marks M) {
ml = M.mi1;
m2 = M.m2;
}
void Display() {
cout << "Marks in 1st Subject:" << mi;

cout << "Marks in 2nd Subject:" << m2;

}
i
int main()
{
/I Make two objects of class Marks
Marks Mark1(45, 89);
Marks Mark2(36, 59);

cout <<" Marks of first student : ";
Mark1.Display();
cout <<" Marks of Second student :";

Mark2.Display();

/I use assignment operator
Markl = Mark2;

cout <<" Mark in 1st Subject :";

Mark1.Display();

Department of Mechatronics Engineering, NCERC, Pampady.

114

MRT 363 : OBJECT ORIENTED PROGRAMMING

return 0;

}
Explanation

private:
int mi;

int m2;

Here, in Class Marks contains private Data Members m1 and m2.

Marks Mark1(45, 89);
Marks Mark2(36, 59);

In the main function, we have made two objects ‘Mark1’ and ‘Mark2’ of class ‘Marks’. We have

initialized values of two objects using parametrised constructor.

void operator=(const Marks &M) {
ml = M.ml,
m2 = M.m2;

As shown in above code, we overload the assignment operator, Therefore, ‘Markl=Mark2’ from

main function will copy content of object ‘Mark2’ into ‘Mark1’.
Output

Marks of first student :
Mark in 1st Subject : 45
Marks in 2nd Subject : 89

Marks of Second student :
Mark in 1st Subject : 36
Marks in 2nd Subject : 59

Department of Mechatronics Engineering, NCERC, Pampady. 115

MRT 363 : OBJECT ORIENTED PROGRAMMING

Marks of First student :
Mark in 1st Subject : 36

Marks in 2nd Subject : 59

Type Conversion in C

Atype castis basically a conversionfromone typeto another. There are two types of type conversion:

1. Implicit Type Conversion Also known as ‘automatic type conversion’.
= Done by the compiler on its own, without any external trigger from the user.
= Generally takes place when in an expression more than one data type is present. In such
condition type conversion (type promotion) takes place to avoid lose of data.
= All the data types of the variables are upgraded to the data type of the variable with
largest data type.

bool ->char ->shortint->int->
unsignedint->long->unsigned ->
long long ->float->double ->long double

Itis possible for implicit conversions to lose information, signs can be lost (when signed
is implicitly converted to unsigned), and overflow can occur (when long long is implicitly
converted to float).

Example of Type Implicit Conversion:

Department of Mechatronics Engineering, NCERC, Pampady. 116

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I An example ofimplicit conversion
#include<stdio.h>
int main()
{
int x=10; //integerx
chary="a"; //characterc
/l'y implicitly converted to int. ASCII
/Ivalue of'a'is 97
X=X+Y;
/I xis implicitly converted tofloat
float z=x+ 1.0;
printf("x=%d, z = %f", x, 2);
return O;

}
1. Output:

x =107, z=108.000000

2. Explicit Type Conversion- This processis also called typecasting andit is user defined. Here the user
can type cast the result to make it of a particular data type.
The syntaxin C:

(type) expression

Type indicated the data type to which the final result is converted.

Department of Mechatronics Engineering, NCERC, Pampady. 117

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I C programto demonstrate explicit type casting

#include<stdio.h>

int main()
{
double x=1.2;

/I BExplicit conversionfromdouble to int

int sum=(int)x + 1;

printf("sum=%d", sum);

return 0;

Output:

sum =2

Advantages of Type Conversion

= This is done to take advantage of certain features of type hierarchies or type representations.
= It helps us to compute expressions containing variables of different data types.

Department of Mechatronics Engineering, NCERC, Pampady. 118

MRT 363 : OBJECT ORIENTED PROGRAMMING

MODULE IV
Function and class templates -Exception handling -try-catch-throw
paradigm -exception specification -terminate and Unexpected
functions -Uncaught exception.

TEMPLATES

C++ template is used in situation where we need to write the same function for different data
types. For example, if we need a function to add two variables. The variable can be integer,
float or double. For this purpose we have to write one function for each data type. To avoid
writing the same function for different data types we use template.

There are two types of templates in C++ :

e Function template
e Class template

C++ Function templates are those functions which can
handle different data types without separate code for each of
them.

#include<iostream.h>
#include<conio.h>

template <class T>

T Sum(T n1, T n2) /I Template function
{

Trs;

rs=nl +n2;

return rs;
}

Department of Mechatronics Engineering, NCERC, Pampady. 119

MRT 363 : OBJECT ORIENTED PROGRAMMING

void main()
{
int A=10,B=20,C;
long 1=11J=22 K
C =Sum(AB); /I Calling template function

cout<<"\nThe sum of integer values : "<<C;

K = Sum(1,J); // Calling template function

cout<<"\nThe sum of long values : "<<K;

Output :

The sum of integer values : 30

The sum of long values : 33

To make a function templates, we must write the following statement before function
definition.

template <class T>

Here T is the type name, which is dynamically determined by the compileraccording tothe parameter passedto fu
nction definition.

Like function templates, we can also use templates with class to make member function
common for different data types.

#include<iostream.h>

Department of Mechatronics Engineering, NCERC, Pampady. 120

MRT 363 : OBJECT ORIENTED PROGRAMMING

#include<conio. h>

template <class T>

class Addition /I Template class
{

public:

TAdd(T, T);
I

template <class T>
T Addition<T>::Add(T n1, T n2) /I Template member function
{

Trs;

rs=nl +n2;

return rs;

void main()

{
Addition <int>o0bj1;

Addition <long>0bj2;

int A=10,B=20,C;
long 1=11,J=22 K

C = obj1.Add(A,B); /I Calling template member function

Department of Mechatronics Engineering, NCERC, Pampady.

121

MRT 363 : OBJECT ORIENTED PROGRAMMING

cout<<"\nThe sum of integer values : "<<C;

K = obj2. Add(1,J); /[Calling template member function

cout<<"\nThe sum of long values : "<<K;

Output :

The sum of integer values : 30

The sum of long values : 33

EXCEPTION HANDLING IN C++

An exception is a situation, which occured by the runtime error. In other words, an exception is
a runtime error. An exception may result in loss of data or an abnormal execution of program.

Exception handling is a mechanism that allows you to take appropriate action to avoid runtime
errors.

C++ provides three keywords to support exception handling.

e Try : The try block contain statements which may generate exceptions.

e Throw : When an exception occur in try block, it is thrown to the catch block using throw
keyword.

e Catch :The catch block defines the action to be taken, when an exception occur.

The general form of try-catch block in c++.

Department of Mechatronics Engineering, NCERC, Pampady. 122

MRT 363 : OBJECT ORIENTED PROGRAMMING

throws
exception
value

Explain with an example. Howexception handling is carried out in C++.

Exceptions are run time anomalies. They include conditions like division by zero oraccessto an array

outsideto its boundetc.

Types: Synchronous exception

, Asynchronous
exception.

Errors such as “out of range index” and “overflow belongs to the synchronous type of exceptions.

The errors that are caused by events beyond the control of the program (such as keyboard interrupts) are
called asynchronous exceptions.

The proposed exception handling mechanism in C++ is designated to handle only synchronous
exceptions.

The purpose of exception handling mechanism to provide means to detect and report an exceptional
circumstances so that appropriate action can be taken. The mechanism suggest a separate machine
handling code that perform the following tasks.

Department of Mechatronics Engineering, NCERC, Pampady. 123

MRT 363 : OBJECT ORIENTED PROGRAMMING

O0OFind the problem (Hit the exception)
U O Inform that an error has occurred. (Throw exception)
[IJReceive error information (Catch exception)

O OTake corrective action (Handle exception)

C++ exception handling mechanism s basically built upon three keywords, namely, try, throw

and catch. The keyword try is used to preface ablock of statements which may generate exceptions. This block of
statements is known as try block. When an exception is detected it is thrown using a throw statement in the try
block. A catch block defined by the keyword catch catches the exception thrown by the throw statement in the try
block and handles it appropriately.

Try block

Detects and throws an
exception

Exception object

Catch block

Catches and handles the
exception

0 DOtry blockthrowing an exception
UUinvoking function that generates exception
| I throwing mechanism

[/catching mechanism

0 —multiple catch statements

U catch allexceptions

| Il IRethrowing an exception

General form

Department of Mechatronics Engineering, NCERC, Pampady. 124

MRT 363 : OBJECT ORIENTED PROGRAMMING

try

throw exception;

}
Catch (typearg)

Exceptions that has to be caught when functions are used- The form is as follows:

Type function (arg list)

Throw (object)

try

Invoke function here;

}
Catch (typearg)

{

Handles exception here

Department of Mechatronics Engineering, NCERC, Pampady. 125

MRT 363 : OBJECT ORIENTED PROGRAMMING

}

Multiple catch statements:
try
{

throwexception;

}

Catch (typearg)

{

...... // catch blockl
}

Catch (typearg)

{

...... //catch block2
}

Catch (typearg)

{

...... //catch blockn
}

Generic exception handling is done using ellipse as follows:
Catch(..)

{

}

Department of Mechatronics Engineering, NCERC, Pampady. 126

MRT 363 : OBJECT ORIENTED PROGRAMMING

Define a DivideBy Zero definition and use it to throw exceptionson attempts

to divide by zero.

#include<iostream.h>

Void mian()

{

inta,b;

Cout<<"\n entervalues ofaand b «;
Cin>>g;

Cin>>b;

try{

if(b!=0)

{

Cout<<’\n Result =“<<a/b;

}

else

{
throw(b);

b3 s
Catch(int i)

{

Cout<<’caughtdivide by zero exception *;

i

Example of simple try-throw-catch

#include<iostream.h>

#include<conio.h>

Department of Mechatronics Engineering, NCERC, Pampady.

127

MRT 363 : OBJECT ORIENTED PROGRAMMING

void main()
{
int n1,n2,result;
cout<<"\nEnter 1st number : "
cin>>nl;
cout<<"\nEnter 2nd number : ";
cin>>n2;
try
{
if(n2==0)
throw n2; /[Statement 1

else

{

result = nl /n2;

cout<<"\nThe result is : "<<result;

¥

catch(int x)

{

cout<<"\nCan't divide by : "<<x;

cout<<"™\nEnd of program.";

Output :
Enter 1st number : 45
Enter 2nd number : 0
Can'tdivide by: 0

Department of Mechatronics Engineering, NCERC, Pampady.

128

MRT 363 : OBJECT ORIENTED PROGRAMMING

End of program

The catch block contain the code to handle exception. The catch block is similar to function
definition.

catch(data-type arg)

Data-type specifies the type of exception that catch block will handle, Catch block will receive
value, send by throw keyword in try block.

A single try statement can have multiple catch statements. Execution of particular catch block
depends on the type of exception thrown by the throw keyword. If throw keyword send
exception of integer type, catch block with integer parameter will get execute.

Example of multiple catch blocks

#include<iostream.h>
#include<conio.h>

void main()

{

int a=2;

try
{

if(a==1)

throw a; /lthrowing integer exception

else if(a==2)

Department of Mechatronics Engineering, NCERC, Pampady. 129

MRT 363 : OBJECT ORIENTED PROGRAMMING

throw 'A’; /lthrowing character exception
else if(a==3)
throw 4.5; [Ithrowing float exception
}
catch(int a)
{
cout<<"\nInteger exception caught.";
}
catch(char ch)
{
cout<<"\nCharacter exception caught.";
}
catch(double d)
{
cout<<"\nDouble exception caught."”;
}

cout<<"™\nEnd of program.”;

Output :

Character exception caught.

End of program.

Department of Mechatronics Engineering, NCERC, Pampady. 130

MRT 363 : OBJECT ORIENTED PROGRAMMING

The above example will caught only three types of exceptions that are integer, character and
double. If an exception occur of long type, no catch block will get execute and abnormal
program termination will occur. To avoid this, We can use the catch statement with three dots as

parameter (...) so that it can handle all types of exceptions.

Example to catch all exceptions

#include<iostream.h>
#include<conio.h>

void main()

{

int a=1;

try
{

if(a==1)

throw a; /lthrowing integer exception

else if(a==2)

throw 'A’; /lthrowing character exception

else if(a==3)

throw 4.5; /lthrowing float exception

}
catch(...)

{

cout<<"\nException occur.";

Department of Mechatronics Engineering, NCERC, Pampady.

131

MRT 363 : OBJECT ORIENTED PROGRAMMING

cout<<"\nEnd of program.";
}
Output :
Exception occur.

End of program.

Rethrowing exception is possible, where we have aninner and outer try-catch state ments (
Nested try-catch). An exception to be thrown from inner catch block to outer catch block is

called rethrowing exception.

Syntax of rethrowing exceptions

Ty
{
Ty
T
LS
Thirow wal: —_—
—————————— T throws
Y exception
T - walue
catch{data-tvpe arg) --a—
i
thirow —
. - - - ----~ *,_ Rethrows
X Y exception wvalue
1
¥ -
catchidata-twpe ard -
{

Example of rethrowing exceptions

#include<iostream.h>
#include<conio.h>

void main()

Department of Mechatronics Engineering, NCERC, Pampady. 132

MRT 363 : OBJECT ORIENTED PROGRAMMING

int a=1;

try

try

throw a;

}
catch(int x)

{

cout<<"\nException in inner try-catch block.";

throw x;

¥

catch(int n)

{

cout<<"\nException in outer try-catch block.";

cout<<"™\nEnd of program.";

}
Output :

Exception in inner try-catch block.
Exception in outer try-catch block.

End of program.

Department of Mechatronics Engineering, NCERC, Pampady. 133

MRT 363 : OBJECT ORIENTED PROGRAMMING

We can restrict the type of exception to be thrown, froma
function to its calling statement, by adding throw keyword
to a function definition.

Example of restricting exceptions

#include<iostream.h>

#include<conio.h>

void Demo() throw(int ,double)

{
int a=2;
if(a==1)
throw a; /lthrowing integer exception
else if(a==2)
throw 'A’; /lthrowing character exception
else if(a==3)
throw 4.5; /lthrowing float exception
}
void main()
{
try
{
Demo();
}

catch(int n)

Department of Mechatronics Engineering, NCERC, Pampady. 134

MRT 363 : OBJECT ORIENTED PROGRAMMING

cout<<"\nException caught.";

}

cout<<"™\nEnd of program.";

The above program will abort because we have restricted the Demo() function to throw only
integer and double type exceptions and Demo() is throwing character type exception.

Exception Specifications

C++ provides a mechanism to ensure that a given function is limited to throwing only
a specified list of exceptions. An exception specification at the beginning of any
function acts as a guarantee to the function's caller that the function will not directly
or indirectly throw any exception not contained in the exception specification.

It is possible to restrict a function to throw only specified exceptions. This is achieved by adding a throw
list clause to the function definition. The general form of using an exception specification is:

Type function(arg-list) throw (type list)
{

Function body

The type-list specifies the type of exceptions that may be thrown.Throwing any other type of exception
will cause abnormal program termination.If we wish to prevent a function from throwing any
exception,we may do so by making the type-list empty.that is we must use,

Throw(); //empty list

In the function header line.

Department of Mechatronics Engineering, NCERC, Pampady. 135

MRT 363 : OBJECT ORIENTED PROGRAMMING

unexpected() and terminate() Functions

Not all thrown errors can be caught and successfully dealt with by a catchblock. In
some situations, the best way to handle an exception is to terminate the program. Two
special library functions are implemented in C++ to process exceptions not properly
handled by catch blocks or exceptions thrown outside of a valid try block. These
functions are unexpected() and terminate().

When a function with an exception specification throws an exception that is not listed
in its exception specification, the function void unexpected() is called. Next,
unexpected() calls a function specified by the set unexpected() function. By default,
unexpected() calls the function terminate().

In some cases, the exception handling mechanism fails and a call to void terminate()
Is made. This terminate() call occurs inany of the following situations:

« When terminate() is explicitly called

« When no catch can be matched to a thrown object

« When the stack becomes corrupted during the exception-handling process
o When asystem defined unexpected() is called

The terminate() function calls a function specified by the set_terminate() function. By
default, terminate calls abort() , which exits from the program.

A terminate function cannot return to its caller, either by using return or by throwing
an exception.

Uncaught exceptions
In the pastfewexamples, there are quite a few cases where a function assumes its caller (or another function
somewhere up the call stack) will handle the exception. In the following example, mySqrt() assumes someone will

handle the exception thatit throws -- but what happens if nobody actually does?

Here’s our square rootprogramagain, minus the try block in main():

Department of Mechatronics Engineering, NCERC, Pampady. 136

MRT 363 : OBJECT ORIENTED PROGRAMMING

1 #include <iostream>
2 #include <cmath>// for sgrt() function
3

4 /I A modular square root function

(6]

double mySqrt(double x)

6 {

7 Il If the user entereda negative number, thisis an error condition

8 if(x<0.0)
9 throw"Can not take sgrt of negative number"; // throwexception of type const char*
10

11 returnsgrt(x);

12}

13

14 int main()

15 {

16 std:cout << "Enteranumber: *;
17 double x;

18 std:cin >> x;

19

20 // Look ma, no exception handler!
21 std:cout <<"Thesgrt of " << x << "is " << mySgrt(x) << '\n’;
22

23 returnO;

24}

Now, let’s say theuser enters -4, and mySqrt(-4) raises an exception. Function mySqrt() doesn’t handle the
exception, so theprogramstack unwinds and control returns to main(). But there’s no exception handler here either,
so main() terminates. At this point, we just terminated our application!

When main() terminates with an unhandled exception, the operating systemwill generally notify you thatan
unhandled exceptionerror has occurred. How it does this depends on the operating system, but possibilities include
printing an error message, popping upan errordialog, or simply crashing. Some OSes are less graceful than others.

Department of Mechatronics Engineering, NCERC, Pampady. 137

MRT 363 : OBJECT ORIENTED PROGRAMMING

Generally this is something youwant toavoid altogether!

Catch-all handlers

And nowwe find ourselves in a conundrum: functions can potentially throw exceptions of any data type, and if an
exception is not caught, it will propagate to the top of your programand causeit to terminate. Since it’s possible to
call functions withoutknowing howtheyare evenimplemented (and thus, what type of exceptions they may throw),

how can we possibly prevent this from happening?

Fortunately, C++ provides us with a mechanism to catch all types of exceptions. This is known as a catch-all
handler. A catch-allhandler works just like a normal catch block, except that instead of using a specific type to
catch, it uses the ellipses operator (...) as the type to catch.

Here’s an simple example:

1 #include <iostream>

2

3 int main()

4 {

5 try

6 {

7 throw5; // throwan int exception

8 }

9 catch (double x)

10 {

11 std::cout << "We caught an exception of type double: " << x << '\n’;
12 }

13 catch (...) // catch-all handler

14 {

15 std::cout << "We caught an exception of an undeterminedtype\n";
16 }

17}

Because there is no specific exception handler for type int, the catch-all handler catches this exception. This example
producesthe following result:

Department of Mechatronics Engineering, NCERC, Pampady. 138

MRT 363 : OBJECT ORIENTED PROGRAMMING

We caught an exception ofan undetermined type

The catch-allhandler should be placed last in the catch block chain. This is to ensure thatexceptions can be caught
by exception handlers tailoredto specific data types if those handlers exist. Often, the catch-allhandler blockis left
empty:

1 catch(...) {}// ignore any unanticipated exceptions

This will catch any unanticipated exceptions and preventthemfromstack unwindingto the top of your program, but
does no specific error handling.

Department of Mechatronics Engineering, NCERC, Pampady. 139

MRT 363 : OBJECT ORIENTED PROGRAMMING

MODULE V

Inheritance - public, private, and protected derivations - multiple inheritance
- virtual base class - abstract class - composite objects Runtime polymorphism
- virtual functions - pure virtual functions- RTTI - typeid - dynamic casting -
RTTI and templates - cross casting - down casting .

Inheritance n C++

The capability of a class to derive properties and characteristics from another class is called Inheritance.
Inheritance is one of the most important feature of Object Oriented Programming.

Sub Class: The class that inherits properties from another class is called Sub class or DerivedClass.

Super Class: The class whose properties are inherited by sub class is called Base Class or Super class.

Why and when to use inheritance?

Consider a group of vehicles. You need to create classes for Bus, Car and Truck. The methods
fuelAmount(), capacity(), applyBrakes() will be same for all of the three classes. If we create these classes
avoiding inheritance then we have to write all of these functions in each of the three classes as shown in

below figure:
Class Bus Class Car Class Truck
fuelAmount() fuelAmount|() fuelAmount|()
capacity() capacity() capacity()
applyBrakes() applyBrakes() applyBrakes()

You can clearly see that above process results in duplication of same code 3 times. This increases the
chances of error and data redundancy. To avoid this type of situation, inheritance is used. If we create a
class Vehicle and write these three functions in it and inherit the rest of the classes from the vehicle class,
then we can simply avoid the duplication of data and increase re-usability. Look at the below diagram in

Department of Mechatronics Engineering, NCERC, Pampady. 140

http://cdncontribute.geeksforgeeks.org/wp-content/uploads/inheritance.png

MRT 363 : OBJECT ORIENTED PROGRAMMING

which the three classes are inherited from vehicle class:

Class Vehicle

fuelAmount()

capacity()
applyBrakes()

l

Class Bus Class Car Class Truck

Using inheritance, we have to write the functions only one time instead of three times as we have

inherited rest of the three classes from base class(\ehicle).

Implementing inheritance in C++:

For creating a sub-class which is inherited from the base class we have to follow the belowsyntax.

Syntax:

class subclass_name : access_mode base_class_name

{
//body of subclass

¥

Here, subclass_name is the name of the sub class, access_mode is the mode in which you want to
inherit this sub class for example: public, private etc. and base_class_name is the name of the base class
from which you want to inherit the sub class.
Note: A derived class doesn’t inherit access to private data members. However, it does inherit a full
parent object, which contains any private members which that class declares.

Department of Mechatronics Engineering, NCERC, Pampady. 141

http://cdncontribute.geeksforgeeks.org/wp-content/uploads/inheritance2.png

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I C++ programto demonstrate implementation

/1 of Inheritance

#include <bits/stdc++.h>

using namespace std;

//Base class

class Parent

{
public:

intid_p;

/1 Sub class inheriting from Base Class (Parent)

class Child : public Parent

{
public:

intid_c;

//main function
int main()

{

Child obj1;

/I An object of class child has all data members

Department of Mechatronics Engineering, NCERC, Pampady.

142

MRT 363 : OBJECT ORIENTED PROGRAMMING

/l'and member functions of class parent
objlid_c=7;

objlid_p=91;

cout<<"Childid is " << objl.id_c<<end]l;

cout<<"Parentidis " << objl.id_p<<endl;

return O;

¥
Run on IDE

Output:

Child id is 7

Parent id is 91

In the above program the ‘Child’ class is publicly inherited from the ‘Parent’ class so the public data
members of the class ‘Parent’ will also be inherited by the class ‘Child’.

Modes of Inheritance

1. Public mode: If we derive asub class froma public base class. Then the public member of the base class
will become public in the derived class and protected members of the base class will become protected in
derived class.

2. Protected mode: If we derive a sub class from a Protected base class. Then both public member and
protected members of the base class will become protected in derived class.
3. Private mode: If we derive asub class froma Private baseclass. Then both public member and protected
members of the base class will become Private in derived class.
Note : The private members in the base class cannot be directly accessed in the derived class, while
protected members can be directly accessed. For example, Classes B, C and D all contain the variables X,
y and z in below example. It is just question of access.

Department of Mechatronics Engineering, NCERC, Pampady. 143

MRT 363 : OBJECT ORIENTED PROGRAMMING

/l C++ Implementation to showthata derivedclass
// doesn’t inherit access to private datamembers.
/I However, it does inherit a full parent object
class A
{
public:

int x
protected:

inty;
private:

int z;

¥

class B: public A
{
/I xis public
/l'y is protected

/! zis not accessible fromB

2

class C: protected A
{
/I x is protected
[l'y is protected

/! zis not accessible fromC

¥

Department of Mechatronics Engineering, NCERC, Pampady. 144

MRT 363 : OBJECT ORIENTED PROGRAMMING

class D:private A //'private'is default for classes
{

[/l xis private

/1y is private

Il zis not accessible fromD
¥

The below table summarizes the above three modes and shows the access specifier of the members of
base class in the sub class when derived in public, protected and private modes:

Base class Type of Inheritence
member
HCCB.S.S Public Protected Private
specifier
Public Public Protected Private
Protected Protected Protected Private
Private Mot accessible Mot accessible Mot accessible
(Hidden) (Hidden) (Hidden)

Types of Inheritance in C++

1. Single Inheritance: In single inheritance, a class is allowed to inherit fromonly one class. i.e. one sub

Class A |(Base Class)

Class B (Derived Class)

class is inherited by one base class only.

Syntax:
2. class subclass_name : access_mode base_class
3. {
4, /Ibody of subclass
5 k%

Department of Mechatronics Engineering, NCERC, Pampady. 145

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I C++ programto explain
/I Single inheritance
#include <iostream>

using namespace std;

/I'base class
class Vehicle {
public:
Vehicle()
{
cout<<"This is a Vehicle" <<endl;

}

b

// sub class derived fromtwo baseclasses

class Car: public Vehicle{

{//'main function

int main()

{
/I creating object of sub class will
/l'invoke the constructor ofbaseclasses
Car obyj;

return O;

Department of Mechatronics Engineering, NCERC, Pampady.

146

MRT 363 : OBJECT ORIENTED PROGRAMMING

Output:

6. Thisisa vehicle

Multiple Inheritance: Multiple Inheritance is a feature of C++where a class can inherit from more than
one classes. ie onesub classis inherited from more than onebase classes.

(Base Class 1) | Class B Class C | (Base Class 2)

Class A (Derived Class)

Syntax:

class subclass_name : access_mode base_classl, access_mode base_class2,

{
//body of subclass

¥

Here, the number ofbase classes will be separated by a comma (*, ©) and access mode for every base class
must be specified.

Department of Mechatronics Engineering, NCERC, Pampady. 147

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I C++ programto explain
/' multiple inheritance
#include <iostream>

using namespace std;

[first base class
class Vehicle {
public:
Vehicle()
{
cout<<"This is a Vehicle" <<endl;

}

b

/I secondbaseclass
class FourWheeler {
public:
FourWheeler()
{
cout <<"This is a4 wheeler Vehicle" <<endl;

}

b

/I sub classderived fromtwo baseclasses

class Car: public Vehicle, public FourWheeler {

Department of Mechatronics Engineering, NCERC, Pampady.

148

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I'main function

int main()

{
/I creating object of sub class will
/l'invoke the constructor ofbaseclasses
Car obj;

return O;

Output:

This is a Vehicle

This is a 4 wheeler Vehicle

Multilevel Inheritance: Inthis type ofinheritance, aderivedclass is created fromanother derived class.

Class C

(Base Class 1) | Class B

h 4

Class A

(Base Class 2)

(Derived Class)

Department of Mechatronics Engineering, NCERC, Pampady.

149

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I C++ programto implement
// Multilevel Inheritance
#include <iostream>

using namespace std;

/I'base class
class Vehicle
{
public:
Vehicle()
{
cout<<"This is a Vehicle" <<endl;
}
h
class fourWheeler: public Vehicle
{ public:
fourWheeler()
{
cout<<"Objects with 4wheels are vehicles"<<endl;
}
b
{I'sub class derived fromtwo base classes
class Car: public fourWheeler{
public:
car()

{

cout<<"Carhas 4 Wheels"<<end|;

Department of Mechatronics Engineering, NCERC, Pampady.

150

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I'main function

int main()

{
/lcreating objectofsub class will
/linvoke the constructor ofbase classes
Car obyj;
return 0;

}

7. output:

8. Thisisa Vehicle
9. Objects with 4 wheels are vehicles

10. Car has 4 Wheels

Hierarchical Inheritance: Inthis type of inheritance, more than one subclass is inherited froma single base
class. i.e. more than one derived class is created froma single base class.

Class G

Class B Class E

Class A Class C Class D Class F

Department of Mechatronics Engineering, NCERC, Pampady. 151

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I C++ programto implement
// Hierarchical Inheritance
#include <iostream>

using namespace std;

/I'base class
class Vehicle
{
public:
Vehicle()
{
cout<<"This is a Vehicle" <<endl;

}

h

/Il firstsub class

class Car: public Vehicle

{

// secondsubclass

class Bus: public Vehicle

{

Department of Mechatronics Engineering, NCERC, Pampady.

152

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I'main function

int main()

{
/I creating object of sub class will
/l'invoke the constructor ofbaseclass
Car obj1,;
Bus obj2;
return 0O;

}
Output:

This is a Vehicle

This is a Vehicle

Hybrid (Virtual) Inheritance: Hybrid Inheritance is implemented by combining more than one type of
inheritance. For example: Combining Hierarchical inheritance and Multiple Inheritance.
Below image shows the combination of hierarchical and multiple inheritance:

Class F Class G

Class B Class E

Class A Class C

Department of Mechatronics Engineering, NCERC, Pampady. 153

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I C++ programfor Hybrid Inheritance

#include <iostream>

using namespace std;

I/ base class
class Vehicle
{
public:
Vehicle()
{
cout <<"This is a Vehicle" <<end];

}

b

/Ibaseclass
class Fare
{
public:
Fare()

{

cout<<"Fare of Vehicle\n";

[firstsub class

class Car: public Vehicle

Department of Mechatronics Engineering, NCERC, Pampady.

154

MRT 363 : OBJECT ORIENTED PROGRAMMING

// secondsubclass

class Bus: public Vehicle, public Fare

{

/I'main function

int main()

{
// creating object of sub class will
/l'invoke the constructor of baseclass
Bus obj2;
return 0;

}

Output:

This is a Vehicle

V| rtu al base CIaSS is used in situation where a derived have multiple copies of

base class.

What is a virtual base class?

- An ambiguity can arise when several paths exist to a class from the same base class. This means that a
child class could have duplicate sets of members inherited from a single base class.

- C++ solves this issue by introducing a virtual base class. When a class is made virtual, necessary care is
taken so that the duplication is avoided regardless of the number of paths that exist to the child class.

Department of Mechatronics Engineering, NCERC, Pampady. 155

MRT 363 : OBJECT ORIENTED PROGRAMMING

What is Virtual base class? Explain its uses.

- When two or more objects are derived from a common base class, we can prevent multiple
copies of the base class being present in an object derived from those objects by declaring the
base class as virtual when it is being inherited. Such a base class is known as virtual base class.
This can be achieved by preceding the base class’ name with the word virtual.

Consider the following figure:

.

N e

¥

ClassDy

Example without using virtual base class

#include<iostream.h>

#include<conio.h>

class ClassA
{
public:
int a;
h

class ClassB : public ClassA

{
public:

int b;

Department of Mechatronics Engineering, NCERC, Pampady. 156

MRT 363 : OBJECT ORIENTED PROGRAMMING

class ClassC : public ClassA

j
{
public:
int c;
I

class ClassD : public ClassB, public ClassC

{
public:
int d;
I
void main()
{

ClassD obyj;

obj.a = 10; //Statement 1, Error occur

obj.a =100; //Statement 2, Error occur

obj.b =20;
obj.c = 30;
obj.d =40;

cout<< "\n A: "<< obj.a;
cout<< "\n B : "<< obj.b;
cout<< "\n C: "<< obj.c;

cout<< "\n D : "<< 0bj.d;

Department of Mechatronics Engineering, NCERC, Pampady.

157

MRT 363 : OBJECT ORIENTED PROGRAMMING

Output :
A from ClassB : 10
A from ClassC : 100
B:20
C:30
D: 40
In the above example, both ClassB & ClassC inherit ClassA, they both have single copy

of ClassA. However ClassD inherit both ClassB & ClassC, therefore ClassD have two copies
of ClassA, one from ClassB and another from ClassC.

Statement 1 and 2 in above example will generate error, bco'z compiler can't differentiate
between two copies of ClassA in ClassD.

To remove multiple copies of ClassA from ClassD, we must
inherit ClassA in ClassBand ClassC as virtual class.

Example using virtual base class

#include<iostream.h>

#include<conio.h>

class ClassA
{
public:
int a;
b

class ClassB : virtual public ClassA

{

Department of Mechatronics Engineering, NCERC, Pampady. 158

MRT 363 : OBJECT ORIENTED PROGRAMMING

public:
int b;
i
class ClassC : virtual public ClassA
{
public:
int c;
I

class ClassD : public ClassB, public ClassC
{

public:
int d;
H
void main()
{

ClassD obyj;

obj.a = 10; //Statement 1
obj.a =100; //Statement 2

obj.b =20;
obj.c = 30;
obj.d =40;

cout<< "\n A: "<< obj.a;
cout<< "\n B : "<< obj.b;
cout<< "\n C: "<< obj.c;

cout<< "\n D : "<< 0bj.d;

Department of Mechatronics Engineering, NCERC, Pampady.

159

MRT 363 : OBJECT ORIENTED PROGRAMMING

Output :
A:100
B:20
C:30
D:40

According to the above example, ClassD have only one copy of ClassA and statement 4 will
overwrite the value of a, given in statement 3.

C++ VIRTUAL FUNCTION: Giving new implementation of base class method

into derived class and the calling of this new implemented function with derived class's object
is called function overriding.

Giving new implementation of derived class method into base class and the calling of this new
implemented function with base class's object is done by making base class function as virtual
function.

Virtual function is used in situation, when we need to invoke derived class function using base
class pointer. We must declare base class function as virtual using virtual keyword preceding
its normal declaration. The base class object must be of pointer type so that we can dynamically
replace the address of base class function with derived class function. This is how we can
achieve "Runtime Polymorphism™.

If we doesn't use virtual keyword in base class, base class pointer will always execute function
defined in base class.

Example of virtual function

#include<iostream.h>

#include<conio.h>

class BaseClass

{

Department of Mechatronics Engineering, NCERC, Pampady. 160

MRT 363 : OBJECT ORIENTED PROGRAMMING

public:
virtual void Display()
{
cout<<"\n\tThis is Display() method of Base Class";
}
void Show()
{
cout<<"\n\tThis is Show() method of Base Class";
}

class DerivedClass : public BaseClass

{

public:
void Display()
{
cout<<"\n\tThis is Display() method of Derived Class";

void Show()
{

cout<<"\n\tThis is Show() method of Derived Class";

%

void main()

Department of Mechatronics Engineering, NCERC, Pampady. 161

MRT 363 : OBJECT ORIENTED PROGRAMMING

{
DerivedClass D;
BaseClass *B; /ICreating Base Class Pointer
B = new BaseClass;
B->Display(); /IThis will invoke Display() method of Base Class
B->Show(); /[This will invoke Show() method of Base Class
B=&D;
B->Display(); /[This will invoke Display() method of Derived Class
//lbcoz Display() method is virtual in Base Class
B->Show(); /[This will invoke Show() method of Base Class
//lbcoz Show() method is not virtual in Base Class
}
Output :

This is Display() method of Base Class
This is Show() method of Base Class
This is Display() method of Derived Class
This is Show() method of Base Class

PURE VIRTUAL FUNCTION IN C++

A virtual function will become pure virtual function when you append "=0" at the end of

Department of Mechatronics Engineering, NCERC, Pampady.

162

MRT 363 : OBJECT ORIENTED PROGRAMMING

declaration of virtual function. Pure virtual function doesn't have body or implementation. We
must implement all pure virtual functions in derived class.

Pure virtual function is also known as abstract function.

A class with at least one pure virtual function or abstract function is called abstract class. We
can't create an object of abstract class. Member functions of abstract class will be invoked by
derived class object.

Example of pure virtual function

#include<iostream.h>

#include<conio.h>

class BaseClass /IAbstract class

{
public:
virtual void Displayl()=0; //Pure virtual function or abstract function
virtual void Display2()=0; //Pure virtual function or abstract function
void Display3()
{
cout<<"\n\tThis is Display3() method of Base Class™;
}
I

class DerivedClass : public BaseClass

{

public:

Department of Mechatronics Engineering, NCERC, Pampady. 163

MRT 363 : OBJECT ORIENTED PROGRAMMING

void Displayl()

{
cout<<"\n\tThis is Displayl() method of Derived Class";

void Display2()

{
cout<<"\n\tThis is Display2() method of Derived Class";

}

I

void main()

{
DerivedClass D;
D.Displayl(); /I This will invoke Displayl() method of Derived Class
D.Display2(); /I This will invoke Display2() method of Derived Class
D.Display3(); /I This will invoke Display3() method of Base Class

}

Output :

This is Displayl() method of Derived Class
This is Display2() method of Derived Class
This is Display3() method of Base Class

Abstract class is used in situation, when we have partial set of implementation of

Department of Mechatronics Engineering, NCERC, Pampady. 164

MRT 363 : OBJECT ORIENTED PROGRAMMING

methods in a class. For example, consider a class have four methods. Out of four methods, we
have an implementation of two methods and we need derived class to implement other two
methods. In these kind of situations, we should use abstract class.

A virtual function will become pure virtual function when you append "=0" at the end of
declaration of virtual function.

A class with at least one pure virtual function or abstract function is called abstract class.
Pure virtual function is also known as abstract function.

e We can't create an object of abstract class b'coz it has partial implementation of methods.
e Abstract function doesn't have body
e We must implement all abstract functions in derived class.

Example of C++ Abstract class

#include<iostream.h>

#include<conio.h>

class BaseClass /IAbstract class

{
public:
virtual void Displayl()=0; //Pure virtual function or abstract function
virtual void Display2()=0; //Pure virtual function or abstract function
void Display3()
{
cout<<"\n\tThis is Display3() method of Base Class™;
}
i

Department of Mechatronics Engineering, NCERC, Pampady. 165

MRT 363 : OBJECT ORIENTED PROGRAMMING

class DerivedClass : public BaseClass

{

public:
void Displayl()
{
cout<<"\n\tThis is Displayl() method of Derived Class";

void Display2()
{
cout<<"\n\tThis is Display2() method of Derived Class";

void main()

{

DerivedClass D;

D.Displayl(); /I This will invoke Displayl() method of Derived Class
D.Display2(); /I This will invoke Display2() method of Derived Class
D.Display3(); /I This will invoke Display3() method of Base Class

Output :

Department of Mechatronics Engineering, NCERC, Pampady.

166

MRT 363 : OBJECT ORIENTED PROGRAMMING

This is Displayl() method of Derived Class
This is Display2() method of Derived Class

This is Display3() method of Base Class

composite objects Runtime polymorphism

Virtual Functions

Virtual Function is a function in base class, which is overrided in the derived class, and which tells
the compiler to perform Late Binding on this function.

Virtual Keyword is used to make a member function of the base class Virtual.

Late Binding

In Late Binding function call is resolved at runtime. Hence, now compiler determines the type of
object at runtime, and then binds the function call. Late Binding is also called Dynamic Binding
or RuntimeBinding.

Problem without Virtual Keyword

voidshow()

{

cout << "Base class";
}
H
class Derived:public Base

{

public:

voidshow()

{

Department of Mechatronics Engineering, NCERC, Pampady. 167

MRT 363 : OBJECT ORIENTED PROGRAMMING

cout <<"Derived Class";

}
}

int main()

{

Base* b;
Derivedd:;
b = &d;
b->show();
}

Output : Base class

When we use Base class's pointer to hold Derived class's object, base class pointer or reference will
always call the base version of the function

Using Virtual Keyword

We can make base class's methods virtual by using virtual keyword while declaring them. Virtual
keyword will lead to Late Binding of that method.

voidshow()

{

cout << "Base class";
}
h

class Derived:public Base

{
public:

voidshow()

{

cout <<"Derived Class";
}
}

Department of Mechatronics Engineering, NCERC, Pampady. 168

MRT 363 : OBJECT ORIENTED PROGRAMMING

int main()

{

Base™* b;
Derivedd;
b=&d;
b->show();
}
Output : Derived class

On using Virtual keyword with Base class's function, Late Binding takes place and the derived
version of function will be called, because base class pointer pointes to Derived class object.

Using Virtual Keyword and Accessing Private Method of Derived class

We can call private function of derived class from the base class pointer with the help of virtual
keyword. Compiler checks for access specifier only at compile time. So at run time when late
binding occurs it does not check whether we are calling the private function or public function.

#include

using namespacestd;

voidshow()

{

cout << "Base class\n";

}

class B: public A
{

private:

voidshow()

{

cout <<"Derivedclass\n";

Department of Mechatronics Engineering, NCERC, Pampady. 169

MRT 363 : OBJECT ORIENTED PROGRAMMING

Output : Derived class

Mechanism of Late Binding

Objects of Derived Classes,
class Derivedl and Derived2
\L VTABLEs

Base Class's
Pointers .| Derivedl object

ff_———; &Derivedl::show

Ble— |
Ble
| Derived2object | 3 gperivedz:show

vptr, is the vpointer, which points to the Virtual Function for that object.

VTABLE, is the table containing address of Virtual Functions of each class.

To accomplich late binding, Compiler creates VTABLES, for each class with virtual function. The
address of virtual functions is inserted into these tables. Whenever an object of such class is created
the compiler secretly inserts a pointer called vpointer, pointing to VTABLE for that object. Hence
when function is called, compiler is able to resovle the call by binding the correct function using the
vpointer.

Department of Mechatronics Engineering, NCERC, Pampady. 170

MRT 363 : OBJECT ORIENTED PROGRAMMING

Important Pointsto Remember

1. Only the Base class Method's declaration needs the Virtual Keyword, not the definition.
2. Ifafunction is declared as virtual in the base class, it will be virtual in all its derived classes.
3. The address of the virtual Function is placed in the VTABLE and the copiler

uses VPTR(vpointer) to point to the Virtual Function.

RTTI

RTTI is short for Run-time Type Identification. RTTI is to provide a standard way
for a program to determine the type of object during runtime.

In other words, RTTI allows programs that use pointers or referencesto base classes
to retrieve the actual derived types of the objects to which these pointers or references
refer.

RTTI is provided through two operators:

. The typeid operator, which returns the actual type of the object referredto by a
pointer (or a reference).

. The dynamic_cast operator, which safely converts froma pointer (or reference)to a
base type to a pointer (or reference) to aderived type.

The dynamic_cast Operator

An attempt to convert an object into amore specific object.

Let's look at the code. If you do not understand what's going on, please do not worry,

Department of Mechatronics Engineering, NCERC, Pampady. 171

MRT 363 : OBJECT ORIENTED PROGRAMMING

we'll get to it later.

#include <iostream>

using namespace std;

class A

{
public:
virtual void f(){cout << "Azf()" << endl;}

class B : public A

{
public:
void f(){cout << "B:f()" <<endl;}
b
int main()
{
Aa;
B b;

af(); 1 Af()
bfO); /B

A *pA = &g;
B *pB = &b;
pA->f(); /I A:f()
pB->f(); /I B:f()

pA = &b;

Department of Mechatronics Engineering, NCERC, Pampady.

172

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I pB = &a; /I not allowed
pB = dynamic_cast<B*>(&a;); // allowed but it returns NULL

return O;

The dynamic_cast operator is intended to be the most heavily used RTTI component. It doesn't
give us what type of object a pointer points to. Instead, it answers the question of whether we
can safely assign the address of an object to a pointer of a particular type.

Unlike other casts, a dynamic_cast involves a run-time type check. If the object bound to
the pointer is not an object of the target type, it fails and the value is O. If it's a reference type
when it fails, then an exception of type bad_cast is thrown. So, if we want dynamic_cast to
throw an exception (bad_cast) instead of returning 0, cast to a reference instead of to a pointer.
Note also that the dynamic_cast is the only cast that relies on run-time checking.

"The need for dynamic_cast generally arises because you want to perform derived class operation on a
derived class object, but you have only a pointer or reference-to-base"

Let's look at the example code:

class Base { };

class Derived : public Base { };

int main()

{
Base b;
Derived d;

Department of Mechatronics Engineering, NCERC, Pampady. 173

MRT 363 : OBJECT ORIENTED PROGRAMMING

Base *pb =dynamic_cast<Base*>(&d;); Il #1
Derived *pd = dynamic_cast<Derived*>(&b;); // #2

return O;

The #1 is ok because dynamic_cast is always successful when we cast a class to one
of its base classes

The #2 conwersionhas a compilationerror:

error C2683: 'dynamic_cast' : 'Base’ is not a polymorphic type.

It's because base-to-derived conversions are not allowed with dynamic_cast unless the
base class is polymorphic.

So, if we make the Base class polymorphic by adding virtual function.

Upcasting and Downcasting

Converting a derived-class reference or pointer to a base-class reference or pointer is
called upcasting. It is always allowed for public inheritance without the need for an explicit type

cast.

Actually this rule is part of expressing the is-a relationship. A Derived object is a Base object in
that it inherits all the data members and member functions of a Base object. Thus, anything that

we can do to a Base object, we can do to a Derived class object.

The downcasting, the opposite of upcasting, is a process converting a base-class pointer or

Department of Mechatronics Engineering, NCERC, Pampady. 174

MRT 363 : OBJECT ORIENTED PROGRAMMING

reference to a derived-class pointer or reference.

It is not allowed without an explicit type cast. That's because a derived class could add new data

members, and the class member functions that used these data members wouldn't apply to the

base class.

Here is a self explanatory example

#include <iostream>

using namespace std;

class Employee {

private:

int id;
public:

void show_id(){}
5

class Programmer : public Employee {
public:
void coding(){}

int main()

{
Employee employee;

Programmer programmer;

/I upcast - implicit upcast allowed

Employee *pEmp = &programmer;

Department of Mechatronics Engineering, NCERC, Pampady.

175

MRT 363 : OBJECT ORIENTED PROGRAMMING

/l downcast - explicit type cast required

Programmer *pProg = (Programmer *)&employee;

/I Upcasting: safe - progrommer is an Employee
// 'and has his id to do show_id().
pEmp->show_id();

pProg->show_id();

/I Downcasting: unsafe - Employee does not have
/I the method, coding().

/I compile error: ‘coding’ : is not a member of 'Employee’
/I pEmp->coding();
pProg->coding();

return O;

The typeid

typeid operator allows us to determine whether two objects are the same type.

In the previous example for Upcasting and Downcasting, employee gets the
method coding()which is not desirable. So, we need to check if a pointer is pointing to
the Programmer object before we use the method, coding().

Here is a new code showing how to use typeid:

Department of Mechatronics Engineering, NCERC, Pampady. 176

MRT 363 : OBJECT ORIENTED PROGRAMMING

class Employee {

private:

int id;
public:

void show_id(){}
h

class Programmer : public Employee {
public:
void coding(){}

#include <typeinfo>

int main()
{
Employee lee;

Programmer park;

Employee *pEmpA = &lee;
Employee *pEmpB = &park;

/I check if two object is the same

if(typeid(Programmer) == typeid(lee)) {
Programmer *pProg = (Programmer *)&lee;
pProg->coding();

}

if(typeid(Programmer) == typeid(park)) {
Programmer *pProg = (Programmer *)&park;

pProg->coding();

Department of Mechatronics Engineering, NCERC, Pampady.

177

MRT 363 : OBJECT ORIENTED PROGRAMMING

pEmpA->show _id();
pEmpB->show _id();

return O;

So, only a programmer uses the coding() method.

Note that we included <typeinfo> in the example. The typeid operator returns a
reference to atype_info object, where type_info is a class defined in
the typeinfo header file.

Runtime Type Information (RTTI)

Runtime Type Information (RTTI) is the concept of determining the type of any variable during

Execution (runtime.) The RT T mechanism contains:
®= Theoperator dynamic_cast
= Theoperator typeid
= Thestruct type_info

RTTI can only be used with polymorphic types. This means that with each class you make, you must have at least one

virtual function (either directly or through inheritance.)

Compatibility note: On some compilers you have to enable support of RTTI to keep track of dynamic types.
So to make use of dynamic_cast (see next section) you have to enable this feature. See you compiler documentation for

more detail.

Dynamic_cast

The dynamic_cast can only be used with pointers and references to objects. It makes sure that the result of the type
conversion is valid and complete object of the requested class. This is way a dynamic_cast will always be successful if we

use it to cast a class to one of its base classes. Take a look at the example:

class Base Class{};

Department of Mechatronics Engineering, NCERC, Pampady. 178

MRT 363 : OBJECT ORIENTED PROGRAMMING

class Derived_Class: public Base_Class{};

Base_Classa; Base _Class™* ptr_a;
Derived_Class b; Derived_Class * ptr_b;

ptr_a=dynamic_cast<Base Class *>(&b);
ptr_b =dynamic_cast<Derived_Class *>(&a);

Thefirst dynamic_cast statement will work because we cast from derived to base. The second dynamic_cast statement will
produce a compilation error because base to derived conversion is not allowed with dynamic_cast unless the base class is

polymorphic.

If a class is polymorphic then dynamic_cast will perform a special check during execution. This check ensures that the
expression is a valid and complete object of the requested class.

Take a look at the example:

/I dynamic_cast
#include <iostream>
#include <exception>
using namespace std;

class Base_Class { virtual void dummy() {} };
class Derived_Class: public Base_Class {inta; };

intmain () {
try {
Base_Class * ptr_a =new Derived_Class;
Base_Class * ptr_b =new Base_Class;
Derived_Class * ptr_c;

ptr_c=dynamic_cast< Derived Class *>(ptr_a);
if (ptr_c ==0) cout <<"Null pointer on first type-cast" <<endl;

ptr_c =dynamic_cast< Derived_Class *>(ptr_b);
if (ptr_c ==0) cout <<"Null pointer on second type-cast" <<end];

} catch (exception& my_eX) {cout <<"Exception:" <<my_exwhat();}
return 0;

}

In the example we perform two dynamic_casts from pointer objects of type Base_Class* (namely ptr_a and ptr_b) to a

pointer object of type Derived_Class*.

If everything goes well then the first one should be successful and the second one will fail. The pointers ptr_a and ptr_b are
both of the type Base_Class. The pointer ptr_apointsto an object of the type Derived_Class. The pointer ptr_b pointsto an
object of the type Base_Class. So when the dynamic type cast is performed then ptr_a is pointing to a full object of class

Derived_Class, but the pointer ptr_b points to an object of class Base_Class. This object is an incomplete object of class

Department of Mechatronics Engineering, NCERC, Pampady. 179

MRT 363 : OBJECT ORIENTED PROGRAMMING

Derived_Class; thus this cast will fail!

Because this dynamic_cast fails a null pointer is returned to indicate a failure. When a reference type is converted with

dynamic_cast and the conversion failsthen there will be an exception thrown out instead of the null pointer. The exception

will be of the type bad_cast.

With dynamic_cast it is also possible to cast null pointers even between the pointers of unrelated classes.

Dynamic_cast can cast pointers of any type to void pointer(void*).

Typeid and typ_info

If a class hierarchy is used then the programmer doesn’t have to worry (in most cases) about the data-type of a pointer or

reference, because the polymorphic mechanism takescare of it. In some cases the programmer wantsto know if an object of

a derived class is used. Then the programmer can make use of dynamic_cast. (If the dynamic cast is successful, then the

pointer will point to an object of a derived class or to a class that is derived from that derived class.) But there are

circumstances that the programmer (not often) wantsto knowthe prizes data-type. Then the programmer can use the typeid

operator.

The typeid operator can be used with:
= Variables
= Expressions
= Data-types

Take a look at the typeid example:

#include <iostream>
#include <typeinfo>
using namespace std;

int main ()

{ :
int* a;
intb;

a=0; b=0;
if (typeid(a) '=typeid(b))
{

cout<<"aand b are of different types:\n";

cout<<"ais: " << typeid(a).name() <<\n’;

cout<<"bis:" << typeid(b).name() <<'\n';
}

return O;

Department of Mechatronics Engineering, NCERC, Pampady.

180

MRT 363 : OBJECT ORIENTED PROGRAMMING

Note: the extra header file typeinfo.

Theresult of a typeidis a const type_info&. T he classtype_info is part of the standard C++ library and containsinformation

about data-types. (This information can be different. It all depends on how it is implemented.)

A bad_typeid exception is thrown by typeid, if the type that is evaluated by typeid is a pointer that is preceded by a

dereference operator and that pointer has a null value.

RTTI

RTTI is short for Run-time Type Identification. RTTI isto provide a standard way
for a program to determine the type of object during runtime.

In other words, RTTI allows programs that use pointers or references to base classes
to retrieve the actual derived types of the objects to which these pointers or references
refer.

RTTI is provided through two operators:

. The typeid operator, which returns the actual type of the object referredto by a
pointer (or a reference).

. The dynamic_cast operator, which safely converts froma pointer (or reference)to a
base type to a pointer (or reference) to aderived type.

The dynamic_cast Operator

An attempt to convert an object into amore specific object.

Department of Mechatronics Engineering, NCERC, Pampady. 181

MRT 363 : OBJECT ORIENTED PROGRAMMING

Let's look at the code. If you do not understand what's going on, please do not worry,

we'll get to it later.

#include <iostream>

using namespace std;

class A

{
public:
virtual void f(){cout << "Azf()" << endl;}

class B : public A

{
public:
void f(){cout << "B:f()" <<endl;}
i
int main()
{
Aa;
B b;

af(); /AR
b.f(); 1/ B:£()

A *pA = &g;
B *pB = &b;
pA->f(); /I A:f()
pB->f(); /I B:f()

Department of Mechatronics Engineering, NCERC, Pampady.

182

MRT 363 : OBJECT ORIENTED PROGRAMMING

pA = &b;
/[pB = &a; [/ not allowed
pB = dynamic_cast<B*>(&a;); // allowed but it returns NULL

return O;

The dynamic_cast operator is intended to be the most heavily used RTTI component.
It doesn't give us what type of object a pointer points to. Instead, it answers the
question of whether we can safely assign the address of an object to a pointer of a
particular type.

Unlike other casts, a dynamic_cast involves a run-time type check. If the object
bound to the pointer is not an object of the target type, it fails and the value is 0. If it's
a reference type when it fails, then an exception of type bad_cast is thrown. So, if we
want dynamic_cast to throw an exception (bad_cast) instead of returning 0, castto a
reference instead of to a pointer. Note also that the dynamic_cast is the only cast that
relies on run-time checking.

"The need for dynamic_cast generally arises because you want to perform derived
class operationon a derived class object, but you have only a pointer or reference-to-
base" said Scott Meyers in his book "Effective C++"

Let's look at the example code:

class Base { };

class Derived : public Base { };

int main()

Department of Mechatronics Engineering, NCERC, Pampady. 183

MRT 363 : OBJECT ORIENTED PROGRAMMING

{
Base b;
Derived d;
Base *pb =dynamic_cast<Base*>(&d;); Il #1
Derived *pd = dynamic_cast<Derived*>(&b;); 1/ #2
return 0;

}

The #1 is ok because dynamic_cast is always successful when we cast a class to one
of its base classes

The #2 conwersionhas a compilationerror:

error C2683: 'dynamic_cast' : 'Base' is not a polymorphic type.

It's because base-to-derived conversions are not allowed with dynamic_cast unless the
base class is polymorphic.

So, if we make the Base class polymorphic by adding virtual function.

as in the code sample below, it will be compiled successfully.

class Base {virtual void vf(){}};

Department of Mechatronics Engineering, NCERC, Pampady. 184

MRT 363 : OBJECT ORIENTED PROGRAMMING

class Derived : public Base { };

int main()
{
Base b;
Derived d;
Base *pb = dynamic_cast<Base*>(&d;); Il #1

Derived *pd = dynamic_cast<Derived*>(&b;); /I #2

return O;

But at runtime, the #2 cast fails and produces null pointer.

Let's look at another example.

class Base { virtual void vf(){} };

class Derived : public Base { };

int main()

{

Base *pBDerived = new Derived,
Base *pBBase = new Base;
Derived *pd;

pd = dynamic_cast<Derived*>(pBDerived); #1

Department of Mechatronics Engineering, NCERC, Pampady.

185

MRT 363 : OBJECT ORIENTED PROGRAMMING

pd = dynamic_cast<Derived*>(pBBase); #2

return O;

The example has two dynamic casts from pointers of type Base to a point of
type Derived. But only the #1 is successful.

Even though pBDerived and pBBase are pointers of type Base*, pBDerived points
to an object of type Derived, while pBBase points to an object of type Base. Thus,
when their respective type-castings are performed using dynamic_cast, pBDerived is
pointing to a full object of class Derived, whereas pBBase is pointing to an object of
class Base, which is an incomplete object of class Derived.

In general, the expression

dynamic_cast<Type *>(ptr)

conwverts the pointer ptr to a pointer of type Type* if the pointer-to object (*ptr) is of
type Type or else derived directly or indirectly from type Type. Otherwise, the
expression evaluates to 0, the null pointer.

Dynamic_cast - example

In the code below, there is one function call in main() that's not working. Which one?

#include <iostream>

Department of Mechatronics Engineering, NCERC, Pampady. 186

MRT 363 : OBJECT ORIENTED PROGRAMMING

using namespace std;

class A
{
public:
virtual void g(){}
5
class B : public A
{
public:
virtual void g(){}
b
class C : public B
{
public:
virtual void g(){}
5
class D : public C
{
public:
virtual void g(){}
I
A* £1()
{
A *pa = new C;
B *pb = dynamic_cast<B*>(pa);
return pb;
¥

Department of Mechatronics Engineering, NCERC, Pampady. 187

MRT 363 : OBJECT ORIENTED PROGRAMMING

A* £2()

{
A *pb = new B;
C *pc = dynamic_cast<C*>(pb);
return pc;

¥

A* £3()

{
A *pa = new D;
B *pb = dynamic_cast<B*>(pa);
return pb;

¥

int main()

{

f10->90; /7 (1)
20->90; /7(2)
30->90: /1 (3)

return O;

Answer (2). It's a downcasting.

Dynamic_cast - another example

In this example, the DoSomething(Window* w) is passed down Window pointer. It

Department of Mechatronics Engineering, NCERC, Pampady.

188

MRT 363 : OBJECT ORIENTED PROGRAMMING

calls scroll() method which is only available from Scroll object. So, in this case, we

need to check if the object is the Scroll type or not before the call to

the scroll() method.

#include <iostream>
#include <string>

using namespace std;

class Window

{
public:
Window (){}
Window (const string s):name(s) {};
virtual ~Window() {};
void getName() { cout << name <<endl;};
private:
string name;
5

class ScrollwWindow : public Window

{
public:
ScrollwWindow(string s) : Window(s) {};
~ScrollwWindow() {};
void scroll() { cout << "scroll()" << endl;};
I3

void DoSomething(Window *w)

{

w->getName();

Department of Mechatronics Engineering, NCERC, Pampady.

189

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I w->scroll(); // class "Window" has no member scroll

/I check if the pointer is pointing to a scroll window

ScrollWindow *sw = dynamic_cast<ScrollWindow*>(w);

/I if not null, it's a scroll window object

if(sw) sw->scroll();

¥

int main()

{
Window *w = new Window("plain window");
ScrollWindow *sw = new ScrollWindow("scroll window");
DoSomething(w);
DoSomething(sw);
return O;

¥

Upcasting and Downcasting

Conwerting a derived-class reference or pointer to a base-class reference or pointer is
called upcasting. It is always allowed for public inheritance without the need for an

explicit type cast.

Actually this rule is part of expressing the is-arelationship. A Derived object is
a Base object inthat it inherits all the data members and member functions of

Department of Mechatronics Engineering, NCERC, Pampady. 190

MRT 363 : OBJECT ORIENTED PROGRAMMING

a Base object. Thus, anything that we can do to a Base object, we can do to
a Derived class object.

The downcasting, the opposite of upcasting, is a process converting a base-class
pointer or reference to aderived-class pointer or reference.

It is not allowed without an explicit type cast. That's because a derived class could add
new data members, and the class member functions that used these data members
wouldn't apply to the base class.

Here is a self explanatory example

#include <iostream>

using namespace std;

class Employee {

private:

int id;
public:

void show_id(){}
I3

class Programmer : public Employee {
public:
void coding(){}

int main()

{

Employee employee;

Department of Mechatronics Engineering, NCERC, Pampady. 191

MRT 363 : OBJECT ORIENTED PROGRAMMING

Programmer programmer;

/I upcast - implicit upcast allowed

Employee *pEmp = &programmer;

// downcast - explicit type cast required

Programmer *pProg = (Programmer *)&employee;

Il Upcasting: safe - progrommer is an Employee
// 'and has his id to do show_id().
pEmp->show_id();

pProg->show_id();

// Downcasting: unsafe - Employee does not have
/I the method, coding().

/I compile error: 'coding' : is not a member of 'Employee’
/I pEmp->coding();
pProg->coding();

return O;

More on Upcasting and Downcasting

The typeid

Department of Mechatronics Engineering, NCERC, Pampady.

192

https://www.bogotobogo.com/cplusplus/upcasting_downcasting.php

MRT 363 : OBJECT ORIENTED PROGRAMMING

typeid operator allows us to determine whether two objects are the same type.

In the previous example for Upcasting and Downcasting, employee gets the

method coding()which is not desirable. So, we need to check if a pointer is pointing to

the Programmer object before we use the method, coding().

Here is a new code showing how to use typeid:

class Employee {

private:

int id;
public:

void show_id(){}
I

class Programmer : public Employee {
public:
void coding(){}

#include <typeinfo>

int main()

{
Employee lee;

Programmer park;

Employee *pEmpA = &lee;
Employee *pEmpB = &park;

Department of Mechatronics Engineering, NCERC, Pampady.

193

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I check if two object is the same

if(typeid(Programmer) ==typeid(lee)) {
Programmer *pProg = (Programmer *)&lee;
pProg->coding();

}

if(typeid(Programmer) == typeid(park)) {
Programmer *pProg = (Programmer *)&park;

pProg->coding();
pEmpA->show _id();
pEmpB->show _id();

return O;

So, only a programmer uses the coding() method.

Note that we included <typeinfo> in the example. The typeid operator returns a
reference to atype_info object, where type_info is a class defined in
the typeinfo header file.

RTTI - pros and cons

This is from Google C++ Style Guide.

RTTI allows a programmer to query the C++ class of an object at run time. This is

Department of Mechatronics Engineering, NCERC, Pampady. 194

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Run-Time_Type_Information__RTTI_

MRT 363 : OBJECT ORIENTED PROGRAMMING

done by use of typeid or dynamic_cast. Avoid using Run Time Type Information
(RTTI).

1. Pros
The standard alternatives to RTTI (described below) require modification or redesign
of the class hierarchy in question. Sometimes such modifications are infeasible or
undesirable, particularly in widely-used or mature code.
RTTI can be useful in some unit tests. For example, it is useful in tests of factory
classes where the test has to verify that a newly created object has the expected
dynamic type. It is also useful in managing the relationship between objects and their
mocks.
RTTI is useful when considering multiple abstract objects. Consider

2. bool Base:Equal(Base* other) = 0;

3. bool Derived::Equal(Base* other) {

4. Derived* that = dynamic_cast<Derived*>(other);

5. if (that== NULL)

6. return false;

7.

8. }

9. Cons
Querying the type of an object at run-time frequently means a design problem.
Needing to know the type of an object at runtime is oftenan indication that the design
of your class hierarchy is flawed.
Undisciplined use of RTTI makes code hard to maintain. It can lead to type-based
decisiontrees or switch statements scattered throughout the code, all of which must be
examined when making further changes.

10.Decision

RTTI has legitimate uses but is prone to abuse, so you must be careful when using it.
You may use it freely in unittests, but avoid it when possible in other code. In
particular, think twice before using RTTI in new code. If you find yourself needing to

Department of Mechatronics Engineering, NCERC, Pampady. 195

MRT 363 : OBJECT ORIENTED PROGRAMMING

write code that behaves differently based on the class of an object, consider one of the
following alternatives to querying the type:

. Virtual methods are the preferred way of executing different code paths depending on
a specific subclass type. This puts the work within the object itself.

. If the work belongs outside the object and instead in some processing code, consider a
double-dispatch solution, such as the Visitor design pattern. This allows a facility
outside the object itself to determine the type of class using the built-in type system.

When the logic of a program guarantees that a given instance of a base class is in fact
an instance of a particular derived class, then a dynamic_cast may be used freelyon
the object. Usually one can use a static_cast as an alternative in such situations.
Decisiontrees based on type are a strong indication that your code is on the wrong
track.

if (typeid(*data) == typeid(D1)) {

} else if (typeid(*data) == typeid(D2)) {

} else if (typeid(*data) == typeid(D3)) {

Code such as this usually breaks when additional subclasses are added to the class
hierarchy. Moreowver, when properties of a subclass change, it is difficult to find and
modify all the affected code segments.

Do not hand-implement an RTTI-like workaround. The arguments against RTTI apply
just as much to workarounds like class hierarchies with type tags. Moreower,
workarounds disguise your true intent.

Department of Mechatronics Engineering, NCERC, Pampady. 196

MRT 363 : OBJECT ORIENTED PROGRAMMING

MODULE VI
Streams and formatted I/O - 1/0 manipulators - file handling - random access
- object serialization - namespaces - std namespace - ANSI String Objects -
standard template library.
C++ Input/Output: Streams 4. Input/Output 1

The basic data type for I'0 in C+—+ is the stream. C-— incorporates a complex hierarchy
of stream types. The most basic stream types are the standard mput/output streams:

istream cin built-in input stream variable; by defanlt hooked to keyboard

ocstream cout built-in output stream variable; by default hooked to console

header file: <iostream=>

C++ also supports all the input/output mechanisms that the C language included.
However, C+— streams provide all the input/output capabilities of C_ with substantial
INProvements.

We will exclusively use streams for input and cutput of data.

C|++ Streams are Objects 4. Input/Output 2

The input and oufput streams, cin and cout are actually C+—+ objects. Bnefly:

class: a U+ construct that allows a collection of variables, constants, and functions
to be grouped together logically under a single name

object: a vanable of a type that is a class (also often called an instance of the class)

For example, i st ream is actually a type name for a class. cin is the name of a

variable of fype istream.

So, we would say that cin is an instance or an object of the class istream

An instance of a class will usually have a number of associated functions (called member
functions) that yvou can use to perform operations on that object or to obfain information
about it. The following slides will present a few of the basic stream member fimctions.
and show how to go about using member functions.

Classes are one of the fundamental ideas that separate C+— from C. In this course, we
will explore the standard stream classes and the standard string class.

Department of Mechatronics Engineering, NCERC, Pampady. 197

MRT 363 : OBJECT ORIENTED PROGRAMMING

Cbnceptual Model of a Stream 4. Input/Qutput 3

A stream provides a connection between the process that initializes it and an object. such
as a file. which may be viewed as a sequence of data. In the simplest view, a stream
object is simply a serialized view of that other object. For example, for an input stream:

.f———/_\l
stream cbject da#g,f’fffrfffff
To be ©°F

J

executing process

mput file

To be, or not to be?

That is the question.

We think of data as flowing in the stream fo the process. which can remove data from the
stream as desired. The data in the stream cannot be lost by “flowing past™ before the
program has a chance to remove it.

The stream object provides the process with an “interface™ to the data.

Qutput: the Insertion Operator 4. Input/Output 4

To get information out of a file or a program, we need to explicitly mstruct the computer to
output the desired information

Omne way of accomplishing this in C++ is with the use of an output stream
In order to use the standard I/0 streams. we mnst have in our program the pre-compiler
directive:

#include <iostreams

In order to do output to the screen, we merely use a statement like:

Hint: the insertion operator (<<) points in
the direction the data is flowing.

cout <= " X = " sz« XK

where X is the name of some variable or constant that we want to write to the screen.

Insertions to an output stream can be "chained" together as shown here. The left-most side
must be the name of an output stream wvariable, such as cout.

Department of Mechatronics Engineering, NCERC, Pampady. 198

MRT 363 : OBJECT ORIENTED PROGRAMMING

Input: the Extraction Operator

4. Input/Output &

To get information into a file or a program, we need to explicitly instract the computer to

acquire the desired information.

Omne way of accomplishing this in C-—+ is with the use of an input stream.

As with the standard input stream_ cout, the program must use the pre-compiler directive:

#include <iostream=

In order to do output, we merely use a statement like:

cin »= X;

Hint: the extraction operator (>>) points in
the direction the data is flowing.

where ¥ is the name of some variable that we want to store the value that will be read from

the kevboard.

As with the insertion operator, extractions from an input stream can also be "chained”.
The left-most side must be the name of an inpuf stream variable.

Output Examples

4. Input'Output S

Inserting the name of a vanable or constant fo a stream causes the value of that object to

be written to the stream:

const string Label = "Pings achoed:
"_l-

int totalPings = 127;

coult =« Label ==« totalPings == andl;

endl Is a manipulator,

A manipulator is a C++ construct that
is used to control the formatting of
output and’'or input values,

Pings echoed: 127

Mo special formatting 1s supplied by default.
Alignment. line breaks. etc_. nmst all be

controlled by the programmer:

CoOUt << "CANDLE" << endl;:
COUt ==« "STICK" <= andl;

Manipulators can only e present in
Input/Owutput statements. The endl

manipulator causes a newline
character to be output.

endl is defined in the cicstreams
header file and can be used as long as
the header file has been included.

cout =< "CANDLE'"™;
COUt == "STICK" == andl;

Department of Mechatronics Engineering, NCERC, Pampady. 199

MRT 363 : OBJECT ORIENTED PROGRAMMING

18.1 iostream Library

In C Formatted 1/0 you have learned the formatted I/0O in C by calling various standard
functions. In this Module we will discuss how this formatted 1/0 implemented in C++ by using
member functions and stream manipulators.

If you have completed this C++ Data Encapsulation until C++ Polymorphism, you should be
familiar with class object. In C++ we will deal a lot with classes. It is readily available for us to
use.

We will only discuss the formatted 1/0O here, for file 1/0 and some of the member functions
mentioned in this Module, will be presented in another Module. The discussion here will be
straight to the point because some of the terms used in this Module have been discussed
extensively in C Formatted 1/0.

The header files used for formatted 1/0O in C++ are:

Header file Brief description
Provide basic information required for all stream 1/0 operation such as cin, cout, cerr and clog correspond to ¢

<lostream> input stream. standard output stream and standard unbuffered and buffered error streams respectively
<jomanip= Contains Information useful for performing formatted |/O with parameterized stream manipulation.

<fsfreams Contains information for user controlled flle processing operations.

p— Contains information for performing in-memory formatting or in-core formatting. This resembles file processin

the I/O operation is performed to and from character arrays rather than files.
<stdiostrem= | Contains Information for program that mixes the C and C++ styles of 1/0.

Table 18.1: iostream library

The compilers that fully comply with the C++ standard that use the template based header files
won’t need the .h extension. Please refer to Namespaces for more information.
The iostream class hierarchy is shown below. From the base class ios, we have a derived class:

Class Brief description
Istream Class for stream input operation.
Ostream Class for stream output operation.

Table 18.2: ios derived classes

So, iostream support both stream input and output. The class hierarchy is shown below.

Department of Mechatronics Engineering, NCERC, Pampady. 200

http://www.tenouk.com/Module5.html
http://www.tenouk.com/Module12.html
http://www.tenouk.com/Module17.html
http://www.tenouk.com/Module5.html
http://www.tenouk.com/Module23.html

MRT 363 : OBJECT ORIENTED PROGRAMMING

ios
| istream __ ifstream
igcstream fstream
O3Tream __ ofatrean
igstream ———— fstream

Fignre 18.1: ics class hisrarchy portion

18.2 Left and Right Shift Operators

» We have used these operators in most of the previous tutorials for C++ codes.

= The left shift operator (<<) is overloaded to designate stream output and is called stream
insertion operator.

» The right shift operator (>>) is overloaded to designate stream input and is called stream
extraction operator.

» These operators used with the standard stream object (and with other user defined stream objects)

is listed below:
Operators Brief description
Cin Object of istream class, connected to the standard input device, normally the keyboard.
Cout Object of ostream class, connected to standard output device, normally the display/screen.
Cerr Obiject of the ostream class connected to standard error device. This is unbuffered output, so each
insertion to cerr causes its output to appear immediately.
Clog Same as cerr but outputs to clog are buffered.

Table 18.3: iostream operators

= For file processing C++ uses (will be discussed in another Module) the following classes:
Class Brief description

ifstream | To perform file input operations.

ofstream | For file output operation.

fstream | For file input/output operations.

Table 18.4: File input/output classes

= Stream output program example:

Department of Mechatronics Engineering, NCERC, Pampady. 201

MRT 363 : OBJECT ORIENTED PROGRAMMING

/1 string output using <<
#include <iostream>

using namespace std,;

void main(void)
{
cout<<"Welcome to C++ I/O module!!!"<<endl;
cout<<"Welcome to ";
cout<<"C++ module 18"<<endl;
// endl is end line stream manipulator
/I issue a new line character and flushes the output buffer

/I output buffer may be flushed by cout<<flush; command

Output:

b5 bin' projo0l0.ex

/I concatenating <<
#include <iostream>

using namespace std,;

void main(void)

Department of Mechatronics Engineering, NCERC, Pampady. 202

MRT 363 : OBJECT ORIENTED PROGRAMMING

{
intp =3, q=10;
cout << "Concatenating using << operator.\n"
L e "<<endl;
cout << "70 minus 20 is "<<(70 - 20)<<endl;
cout << "55 plus 4 is "<<(55 + 4)<<endl;
cout <<p<<" + "<<g<<" = "<<(p+a)<<endl;
}
Output:

' b5 bin' projo010.e

78 minusz 28 i=

55 plus 4 is 579

3 + 18 = 13

Pressz any key to continue .

= Stream input program example:
#include <iostream.h>

using namespace std;

void main(void)
{

intp, q,r;

cout << "Enter 3 integers separated by space: \n";

cin>>p>>qg>>r;

Department of Mechatronics Engineering, NCERC, Pampady. 203

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I the >> operator skips whitespace characters such as tabs,
/I blank space and newline. When eof is encountered, zero (false) is returned.

cout<<"Sum of the "<<p<<","<<q<<" and "<<r<<" is = "<<(p+g+r)<<endl;

Output:

bc5ybin',proj0010.exe " O] x|
Enter 3 integers separated hy space:
56 7

Sum of the 5.6 and 7V iz = 18
Press any key to continue . . .

sta::Manipulators

Stream manipulators

Manipulatorsare functions specifically designed to be used in conjunction with the insertion (<<) and extraction (>>) operators
on stream objects, for example:

cout <<boolalpha;

They are still regular functionsand can also be called as any other function using a stream object as argument, for example:

boolalpha(cout);

Manipulators are used to change formatting parameters on streams and to insert or extract certain special characters.

File Handling using File Streams

File represents storage medium for storing data or information. Streams refer to sequence of bytes. In
Files we store data i.e. text or binary data permanently and use these data to read or write in the form
of input output operations by transferring bytes of data. So we use the term File Streams/File
handling. We use the header file <fstream>

e ofstream: It represents output Stream and this is used for writing in files.

o ifstream: It represents input Stream and this is used for reading from files.

Department of Mechatronics Engineering, NCERC, Pampady. 204

MRT 363 : OBJECT ORIENTED PROGRAMMING

o fstream: Itrepresents both output Stream and input Stream. So it can read from files and write to

files.

Operations in File Handling:

e Creating a file: open()
e Reading data: read()
e Writing new data: write()

e Closing a file: close()

Creating/Opening a File

We create/open a file by specifying new path of the file and mode of operation. Operations can be
reading, writing, appending and truncating. Syntax for file creation: FilePointer.open("Path”,ios::mode);

e Example of file opened for writing: st.open("E:\studytonight.bd" ios::out);
e Example of file opened for reading: st.open("E\studytonight.txt",ios::in);
e Example of file opened for appending: st.open("E:\studytonight.txt",ios::app);

e Example of file opened for truncating: st.open("E:\studytonight.txt" ios::trunc);

#include<iostream>
#include<conio>

#include <fstream>

using namespace std;

int main()

{

fstreamst;
st.open("E\studytonight.txt" ios::out);
if(Ist)

{

cout<<"File creation failed";

Department of Mechatronics Engineering, NCERC, Pampady. 205

MRT 363 : OBJECT ORIENTED PROGRAMMING

¥

else

{
cout<<"New file created™;
st.close();

}

getch();

return O;

Writing to a File

#include <iostream>
#include<conio>

#include <fstream>
using namespace std;

int main()

{
fstreamst;
st.open("E\studytonight.t¢" ios::out);
if(Ist)
{

cout<<"File creation failed";

}

else

{

cout<<"Newfile created";
st<<"Hello";

st.close();

¥
getch();

return 0;

Here we are sending output to a file. So, we use ios::.out. As given in the program, information typed

Department of Mechatronics Engineering, NCERC, Pampady. 206

MRT 363 : OBJECT ORIENTED PROGRAMMING

inside the quotes after ""FilePointer << will be passed to output file.

Reading from a File

#include <iostream>
#include<conio>

#include <fstream>

using namespace std;

int main()

{

fstreamst;
st.open("E:\studytonight.tt" ios::in);
if(Ist)

{

cout<<"Nosuchfile";

}

else
{
charch;
while (Ist.eof())
{
st>>ch;
cout<<ch;

}

st.close();

¥
getch();

return O;

Here we are reading input from a file. So, we use ios:in. As given in the program, information from
the output file is obtained with the help of following syntax *'FilePointer >>variable*.

Department of Mechatronics Engineering, NCERC, Pampady. 207

MRT 363 : OBJECT ORIENTED PROGRAMMING

Close a File

Itis done by FilePointer.close().
#include <iostream>
#include<conio>

#include <fstream>

using namespace std;

int main()
{
fstreamst;
st.open("E:\studytonight.tt" ios::out);
st.close();
getch();

return O;

Special operations in a File

There are few important functions to be used with file streams like:
e tellp() - It tells the current position of the put pointer.

Syntax: filepointer.tellp()
o tellg() - It tells the current position of the get pointer.

Syntax: filepointer.tellg()

e seekp() - It moves the put pointer to mentioned location.

Department of Mechatronics Engineering, NCERC, Pampady. 208

MRT 363 : OBJECT ORIENTED PROGRAMMING

Syntax: filepointer.seekp(no of bytes,reference mode)

e seekg() - It moves get pointer(input) to a specified location.

Syntax: filepointer.seekg((no of bytes,reference point)

e put() - Itwrites a single character to file.

e get()- Itreads a single character from file.

Note: For seekp and seekg three reference points are passed:
i0s::beg - beginning of the file

ios::cur - current position in the file

ios::end - end of the file

Below is a program to show importance of tellp, tellg, seekp and seekg:
#include <iostream>
#include<conio>

#include <fstream>

using namespace std;

int main()
{
CEN S
st.open("E:\studytonight.txt" ios::out);
if(Ist)
{
cout<<"File creation failed";
}
else
{
cout<<"New file created"<<endl;

st<<"Hello Friends";

cout<<"File Pointer Position is "<<st.tellp()<<endl;

Department of Mechatronics Engineering, NCERC, Pampady. 209

MRT 363 : OBJECT ORIENTED PROGRAMMING

st.seekp(-1, ios::cur);

cout<<"Aspertellp File Pointer Position s " <<st.tellp()<<endl;

st.close();
}
st.open("E:\studytonight.tdt",ios::in);
if(Ist)
{

cout<<"Nosuchfile";

¥

else
{
charch;
st.seekg(5, ios::beg);
cout<<"Aspertellg File Pointer Positionis " <<st.tellg()<<endl;

cout<<endl;

st.seekg (L, ios::cur);

cout<<"Aspertellg File Pointer Positionis " <<st.tellg()<<endl;
st.close();

¥

getch();

return O;

New file created

File Pointer Position is13

As per tellp File Pointer Position is 12
As per tellg File Pointer Position is5

As per tellg File Pointer Position is 6

C++ File Pointers and Random Access

Every file maintains two pointers called get pointer (in input mode file) and put_pointer (in

Department of Mechatronics Engineering, NCERC, Pampady. 210

MRT 363 : OBJECT ORIENTED PROGRAMMING

output mode file) which tells the current position in the file where reading or writing will takes
place. (A file pointer in this context is not like a C++ pointer but it works like a book-mark in a
book.). These pointers help attain random access in file. That means moving directly to any
location in the file instead of moving through it sequentially.

There may be situations where random access in the best choice. For example, if you have to
modify a value in record no 21, then using random access techniques, you can place the file
pointer at the beginning of record 21 and then straight-way process the record. If sequential

access is used, then you'll have to unnecessarily go through first twenty records in order to reach
at record 21.

The seekg(), seekp(), tellg() and tellp() Functions

In C++, random access is achieved by manipulating seekg(), seekp(), tellg() and tellp() functions.
The seekg() and tellg() functions allow you to set and examine the get pointer, and the seekp()
and tellp() functions perform these operations on the put_pointer.

The seekg() and tellg() functions are for input streams (ifstream) and seekp() and telip()
functions are for output streams (ofstream). However, if you use them with an fstream object
then tellg() and tellp() return the same value. Also seekg() and seekp() work the same way in an
fstream object. The most common forms of these functions are :

seekg() istream & seekg(long); Form 1
g istream & seekg(long, seek_dir); Form 2

seekp() ofstream & seekp(long); Form 1
P ofstream & seekp(long, seek_dir); Form 2

tellg() long tellg()

tellp() long tellp()

The working of seekg() & seekp() and tellg() & tellp() is just the same except that seekg() and
tellg() work for ifstream objects and seekp() and tellp() work for ofstream objects. In the above

Department of Mechatronics Engineering, NCERC, Pampady. 211

MRT 363 : OBJECT ORIENTED PROGRAMMING

table, seek_dir takes the definition enum seek_dir { beg, cur, end};.

The seekg() or seekp(), when used according to Form 1, then it moves the get_pointer or
put_pointer to an absolute position. Here is an example:

ifstreamfin;

ofstreamfout;

: /I file openingroutine

fin.seekg(30); /Iwill move the get_pointer (in ifstream) to byte number 30 in the file
fout.seekp(30); /Iwill move the put_pointer (in ofstream) to bytenumber 30in the file

When seekg() or seekp() function is used according to Form 2, then it moves the get_pointer or
put_pointer to a position relative to the current position, following the definition of seek_dir.

Since, seek_dir is an enumeration defined in the header file iostream.h, that has the following
values:

ios::beg, /I refers to the beginning of the file
ios::cur, /I refers to the currentposition in the file
ios::end} /I refers to the end ofthe file

Here is an example.

fin.seekg (30, ios::beg); /l'goto byte no.30from beginning offile linked with fin
fin.seekg(-2, ios::cur);// backup 2 bytes fromthe current position of get pointer
fin.seekg(0, ios::end); /I gotothe end ofthe file

fin.seekg(-4, i0s::end);// backup 4 bytes fromthe end of the file

The functions tellg() and tellp() return the position, in terms of byte number, of put_pointer and
get_pointer respectively, in an output file and input file.

C++ File Pointersand Random Access Example

Here is an example program demonstrating the concept of file pointers and random access in a
C++ program:

/* C++ File Pointers and RandomAccess
* This programdemonstrates the concept

* offile pointersandrandomaccessin
* CHt*/

#include<fstream.h>
#include<conio.h>
#include<stdlib.h>
#include<stdio.h>
#include<string.h>

Department of Mechatronics Engineering, NCERC, Pampady. 212

MRT 363 : OBJECT ORIENTED PROGRAMMING

class student

{

introllno;

charname[20];

charbranch[3];

float marks;

chargrade;

public:

void getdata()

cout<<"Rollno:";
cin>>rollno;
cout<<"Name:";
cin>>name;

cout<<"Branch:";
cin>>branch;
cout<<"Marks:";
cin>>marks;

if(marks>=75)

grade ="A";
else if(marks>=60)
{

grade ='B;

else if(marks>=50)

grade="C;
else if(marks>=40)
{
grade="D";
}
else
{
grade ="F,
}
}
void putdata()
cout<<"Rollno: "<<rollno<<"\tName: "'<<name<<"\n";
cout<<"Marks: "<<marks<<"\tGrade: "<<grade<<"\n";
}
intgetrno()
{
return rollno;
}
void modify();

Department of Mechatronics Engineering, NCERC, Pampady.

213

MRT 363 : OBJECT ORIENTED PROGRAMMING

¥studl, stud;

void student:modify/()

{

}

cout<<"Rollno: "<<rollno<<"\n";

cout<<"Name:"<<name<<"\tBranch:"<<branch<<"\tMarks: " <<marks<<"\n";

cout<<"Enter newdetails.\n";

charnam[20]="", br[3]="";

float mks;

cout<<"Newname:(Enter'.'to retain old one):";
cin>>nam;

cout<<"New branch:(Press ".'to retain old one): ";
cin>>br;

cout<<"New marks:(Press -1to retain old one):";
cin>>mks;

if(strcmp(nam, *.")!=0)
strcpy(name, nam);

?;‘(strcmp(br, ".")1=0)

¢ strcpy (branch, br);

%‘(mks 1=-1)

{

marks = mks;
if(marks>=75)
{
grade ="A";
else if(marks>=60)
grade ='B;
else if(marks>=50)
{
grade ='C’;
else if(marks>=40)
grade="D";

else

grade ='F

void main()

{

clrscr();

Department of Mechatronics Engineering, NCERC, Pampady.

214

MRT 363 : OBJECT ORIENTED PROGRAMMING

fstreamfio("marks.dat", ios::in |ios::out);
charans='y"
while(ans=="y'||ans=="Y")

studl.getdata();

fio.write((char *)&studl, sizeof(studl));
cout<<"Record addedto the file\n";
cout<<"\nWant toentermore ? (y/n)..";
cin>>ans;

}

clrscr();
intrno;

long pos;
charfound="f;

cout<<"Enterrollno of student whose record is to be modified:";
cin>>rno;

fio.seekg(0);
while(!fio.eof())

pos =fio.tellg();

fio.read((char *)&studl, sizeof(studl));
if(studl.getrno() ==rno)

{

stud1.modify();
fio.seekg(pos);
fio.write((char *)&stud1, sizeof(studl));
found ="t’;
break;
}
}
if(found=="f)
{
cout<<"\nRecord not foundin the file..!\n";
cout<<"Pressany key to ext...\n";
getch();
exit(2);
}
fio.seekg(0);

cout<<"Nowthefile contains:\n";
while(!fio.eof())
{

fio.read((char *)&stud, sizeof(stud));
stud.putdata();

fio.close();
getch();

Here are the sample runs of the above C++ program:

Department of Mechatronics Engineering, NCERC, Pampady.

215

MRT 363 : OBJECT ORIENTED PROGRAMMING

Record added to the file

llant to enter more 7 {y/nd..y
Rollno: 2
NMame : Abhishek

Record added to the file
lJant to enter more ? {y/nd..y

: Prashant
IT

Record added to the file

llant to enter more ? {y/n>..n

After entering the 3 records, just press n, then press enter. After performing this as shown above,
press ENTER and here are the sample runs after pressing the ENTER button:

Branch: EC Marks: 927
Enter new details.

New name:{(Enter ’.’ to retain old onel:

Now enter the roll number of that student whose record is to be modified. Here we enter 1, and
then enter the new information for that roll number as shown here in the above and below
outputs:

Department of Mechatronics Engineering, NCERC, Pampady. 216

MRT 363 : OBJECT ORIENTED PROGRAMMING

C:ATURBOC~1\Disk\TurboC3\S

Enter rollno of student whose record is to be modified: 1
Rollno: 1

Name: Aman Branch: EC Marks: 97

Enter new details.

New name:{(Enter ’.’ to retain old one): Sanjeet

New branch:{(Press ’.’ to retain old one>: ME

New marks:{(Press —1 to retain old one>: 921.58

Now the file contains:

Rollno: 1 Name: Sanjeet
Marks: 91.5 Grade: A
Rollno: 2 Name: Abhishek
Marks: 89 Grade: A
Rollno: 3 Name : Prashant
W EV S I Grade: A

-

Introductionto OBJECT SERIALIZATION

The C++ language provides a somewhat limited support for file processing. This is probably based on the time it was
conceived and put to use. Many languages that were developed after C++, such as (Object) Pascal and Java provide a
better support, probably because their libraries were implemented as the demand was made obvious. Based on this,
C++ supports saving only values of primitive types such as short, int, char double. This canbe done by usingeither the
CFILE structure or C++' own fstream class.

Binary Serialization

Department of Mechatronics Engineering, NCERC, Pampady. 217

http://www.functionx.com/cpp/articles/cfileprocessing.htm
http://www.functionx.com/cpp/articles/filestreaming.htm

MRT 363 : OBJECT ORIENTED PROGRAMMING

Object serialization consists of saving the values that are part of an object, mostly the value gotten fromdeclaring a
variable ofa class. AT thecurrent standard, C++ doesn't inherently supportobjectserialization. To performthis type of
operation, you can use a technique known as binary serialization.

When you decide tosave a value toa medium, the fstreamclass provides the optionto save thevalue in binary format.
This consists of savingeach byte to the mediumby aligning bytes in a contiguous manner, the same way the variables
are stored in binary numbers.

To indicate that you want to save a value as binary, when declaring the ofstream variable, specify the ios option
as binary. Here is an example:

#include <fstream>
#include <iostream>

using namespace std;

class Student

{
public:
char FullName[40];
char CompleteAddress[120];
char Gender;
double Age;
bool LivesInASingleParentHome;
¥
int main()
{

Studentone;

strcpy(one.FullName, "Ernestine Waller");
strcpy(one.CompleteAddress, "824 Larson Drv, Silver Spring, MD 20910");
one.Gender="F;

one.Age =16.50;

Department of Mechatronics Engineering, NCERC, Pampady. 218

http://www.functionx.com/references/numsystem.htm

MRT 363 : OBJECT ORIENTED PROGRAMMING

one.LivesInASingleParentHome =true;

ofstreamofs("fifthgrade.ros", ios::binary);

return O;

}
Writing to the Stream

Theios::binary option lets the compiler knowhowthevalue will be stored. This declaration also initiates the file. To
write the values to a stream, you can call the fstream::write()method.

After calling the write() method, you can write the value of the variable to the medium. Here is an example:
#include <fstream>
#include <iostream>

using namespace std;

class Student

{
public:
char FullName[40];
char CompleteAddress[120];
char Gender;
double Age;
bool LivesInASingleParentHome;
¥
int main()
{

Studentone;

strcpy (one.FullName, "Ernestine Waller");

Department of Mechatronics Engineering, NCERC, Pampady. 219

MRT 363 : OBJECT ORIENTED PROGRAMMING

strcpy(one.CompleteAddress, 824 Larson Drv, Silver Spring, MD 20910");
one.Gender="F;

one.Age =16.50;

one.LivesInASingleParentHome =true;

ofstreamofs(“fifthgrade.ros", ios::binary);

ofs.write((char *)&one, sizeof(one));

return 0;

Reading From the Stream

Reading an objectsavedin binary format is as easy as writing it. To read the value, call the ifstream::read() method.
Here is an example:

#include <fstream>
#include <iostream>

using namespace std;

class Student

{
public:
char FullName[4Q];
char CompleteAddress[120];
char Gender;
double Age;
bool LivesInASingleParentHome;
3

Department of Mechatronics Engineering, NCERC, Pampady. 220

MRT 363 : OBJECT ORIENTED PROGRAMMING

int main()
{

/* Studentone;

strepy (one.FullName, "Ernestine Waller");

strcpy(one.CompleteAddress, "824 Larson Drv, Silver Spring, MD 20910");
one.Gender="F;

one.Age =16.50;

one.LivesInASingleParentHome =true;

ofstreamofs("fifthgrade.ros", ios::binary);

ofs.write((char *)&one, sizeof(one));
*/

Studenttwo;

ifstreamifs ("fifthgrade.ros", ios::binary);

ifs.read((char *)&two, sizeof(two));

cout <<"StudentInformation\n";

cout <<"StudentName:" << two.FullName << end];

cout<<"Address: " << two.CompleteAddress<<endl;

if(two.Gender=="f || two.Gender=="F")
cout<<"Gender: Female" <<endl;

else if(two.Gender=="m' | two.Gender=="M")
cout<<"Gender: Male" <<end];

else

Department of Mechatronics Engineering, NCERC, Pampady. 221

MRT 363 : OBJECT ORIENTED PROGRAMMING

cout<<"Gender: Unknown" <<endl;
cout<<"Age: " <<two.Age <<endl;
if(two.LivesInASingleParentHome ==true)

cout <<"Lives inasingle parent home" <<end];

else
cout<<"Doesn'tlive inasingle parenthome" <<end];
cout<<™\n";
return 0;
}
Namespaces

Namespaces allow to group entities like classes, objects and functionsunder a name. Thisway the global scope can be divided in~
"sub-scopes”, each one with its own name.

The format of namespacesis:

namespace identifier

{

entities

}

Where identifier is any valid identifier and entitiesisthe set of classes, objects and functionsthat are included within the
namespace. For example:

namespace myNamespace

{

inta,b;

}

In this case, the variables a and b are normal variables declared within anamespace called myNamespace. In order to access
these variables from outside the myNamespace namespace we have to use the scope operator ::. For example, to access the
previous variables from outside myNamespace we can write:

Department of Mechatronics Engineering, NCERC, Pampady. 222

MRT 363 : OBJECT ORIENTED PROGRAMMING

myNamespace:a
myNamespace:b

The functionality of namespaces is especially useful in the case that there isa possibility that a global object or function uses the
same identifier as another one, causing redefinition errors. For example:

/I namespaces 5
#include <iostream> 3.1416
using namespace std;

namespace first

intvar=25;

}

namespace second

{
doublevar=3.1416;
}

intmain () {
cout <<first::var << endl;
cout <<second:var<<endl;
return O;

¥

In this case, there are two global variables with the same name: var. One is defined within the namespace first andthe other one
in second. No redefinition errorshappen thanksto namespaces.

using

The keyword using is used to introduce a name from a namespace into the current declarative region. For example:

Department of Mechatronics Engineering, NCERC, Pampady. 223

|I'I'I
Q.

D |ro

http://www.cplusplus.com/doc/oldtutorial/namespaces/
http://www.cplusplus.com/doc/oldtutorial/namespaces/
http://www.cplusplus.com/doc/oldtutorial/namespaces/

MRT 363 : OBJECT ORIENTED PROGRAMMING

/lusing 5
#include <iostream> 2.7183
using namespace std; 10
3.1416

namespace first

intx=5;

inty =10;
}
namespace second

{
doublex=3.1416;
doubley =2.7183;

}

intmain () {
using first::x;
using second::y;
cout<<x << endl;
cout<<y<<endl;
cout <<first::y <<endl;
cout <<second::x<<endl;
return 0;

Notice how in thiscode, x (without any name qualifier) refersto first::x whereas y refersto second::y, exactly as
our using declarations have specified. We still have access to first::y and second::x using their fully qualified names.

The keywordusing can also be used as a directive to introduce an entire namespace:

Department of Mechatronics Engineering, NCERC, Pampady.

224

2 I |1

http://www.cplusplus.com/doc/oldtutorial/namespaces/
http://www.cplusplus.com/doc/oldtutorial/namespaces/
http://www.cplusplus.com/doc/oldtutorial/namespaces/

MRT 363 : OBJECT ORIENTED PROGRAMMING

/lusing 5
#include <iostream> 10
using namespace std; 3.1416
2.7183

namespace first

intx=5;

inty =10;
}
namespace second

{
doublex=3.1416;
doubley =2.7183;

}

intmain () {
using namespace first;
cout<<x << endl;
cout <<y << endl;
cout <<second::x<<endl;
cout <<second:y <<endl;
return 0;

Inthis case, since we have declared that we were using namespace first, all direct uses of x and y without name qualifiers were
referringto their declarationsin namespace first.

using and using namespace have validity only in the same block in which they are stated or in the entire code if they are used
directly in the global scope. For example, if we had the intention tofirst use the objects of one namespace and then those of
another one, we could do something like:

Department of Mechatronics Engineering, NCERC, Pampady. 225

2 I |1

http://www.cplusplus.com/doc/oldtutorial/namespaces/
http://www.cplusplus.com/doc/oldtutorial/namespaces/
http://www.cplusplus.com/doc/oldtutorial/namespaces/

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I using namespace example 5
#include <iostream> 3.1416
using namespace std;

namespace first

intx=5;

¥

namespace second

doublex=3.1416;
}

int main () {

using namespace first;
cout<<x<<endl,

using namespace second;
cout<<x<<endl;

return O;

¥

Namespace alias

We can declare alternate names for existingnamespacesaccording to the following format:

namespace new_name = current_name;

Namespace std

All thefiles in the C++ standard library declare all of its entitieswithin the std namespace. T hat iswhy we have generally

included the using namespace std; statement in all programsthat usedany entity definedin iostream.

R

C++ MANIPULATING STRINGS

A string is a sequence of character. As you know that C++ does not support built-in string type, you

Department of Mechatronics Engineering, NCERC, Pampady.

226

http://www.cplusplus.com/doc/oldtutorial/namespaces/
http://www.cplusplus.com/doc/oldtutorial/namespaces/
http://www.cplusplus.com/doc/oldtutorial/namespaces/
http://www.cplusplus.com/doc/oldtutorial/templates/
http://www.cplusplus.com/doc/oldtutorial/templates/

MRT 363 : OBJECT ORIENTED PROGRAMMING

have used earlier those null character based terminated array of characters to store and manipulate
strings. These strings are termed as C Strings. It often becomes inefficient performing operations on

C strings. Programmers can also define their own string classes with appropriate member functions to
manipulate strings. ANSI standard C++ introduces a new class called string which is an improvised
version of C strings in several ways. In many cases, the strings object may be treated like any other
built-in data type. The string is treated as another container class for C++.

C STYLE STRING

The C style string belongs to C language and continues to support in C++ also strings in C are the

one-dimensional array of characters which gets terminated by \0O (null character).

This is how the strings in C are declared:

charch[6]={H e\l I, 0"
charch[6]={H', eI, 'I, '0', \0};
By

Actually, you do not place the null character at the end of a string constant. The C++ compiler

automatically places the \O at the end of the string when it initializes the array.
String Class in C++
The string class is huge and includes many constructors, member functions, and operators.

Programmers may use the constructors, operators and member functions to achieve the following:

Creating string objects

Reading string objects from keyboard
Displaying string objects to the screen
Finding a substring from a string

Modifying string

Adding objects of string

Comparing strings

Accessing characters of a string

Obtaining the size or length of a string, etc...

Department of Mechatronics Engineering, NCERC, Pampady. 227

MRT 363 : OBJECT ORIENTED PROGRAMMING

Manipulate Null-terminated strings

C++ supports a wide range of functions that manipulate null-terminated strings. These are:

strepy(strl, str2): Copies string str2 into string strl.
strcat(strl, str2): Concatenates string str2 onto the end of string strl.
strlen(strl): Returns the length of string strl.

stremp(strl, str2): Returns O if strl and str2 are the same; less than O if stri<str2; greater than O if
stri>str2.

strchr(strl, ch): Returns a pointer to the first occurrence of character ch in string strl.
strstr(strl, str2): Returns a pointer to the first occurrence of string str2 in string strl.

Important functions supported by String Class

append(): This function appends a part of a string to another string
assign():This function assigns a partial string

at(): This function obtains the character stored at a specified location
begin(): This function returns a reference to the start of the string
capacity(): This function gives the total element that can be stored
compare(): This function compares a string against the invoking string
empty(): This function returns true if the string is empty

end(): This function returns a reference to the end of the string

erase(): This function removes character as specified

find(): This function searches for the occurrence of a specified substring
length(): It gives the size of a string or the number of elements of a string
swap(): This function swaps the given string with the invoking one

Important Constructors obtained by String Class

String(): This constructor is used for creating an empty string

String(const char *str): This constructor is used for creating string objects from a null-terminated
string

String(const string *str): This constructor is used for creating a string object from another string
object

Operators used for String Objects

Department of Mechatronics Engineering, NCERC, Pampady. 228

1
2
3
4
5.
6
7
8
9

MRT 363 : OBJECT ORIENTED PROGRAMMING

=: assignment

+: concatenation

==: Equality

I=: Inequality

<: Less than

<=: Less than or equal

>: Greater than

>=: Greater than or equal
[1: Subscription

10. <<: Output

11. >>: Input

The C++ Standard Template Library (STL)

The Standard Template Library (STL) is a set of C++ template classes to provide common programming data
structures and functions such as lists, stacks, arrays, etc. It is a library of container classes, algorithms and iterators.
It is a generalized library and so, its components are parameterized. A working knowledge of template classes is a
prerequisite for working with STL.

STL has four components

= Algorithms
= Containers
= Functions
= |terators

Algorithms
The headeralgorithmdefines a collection of functions especially designed to be used onranges of elements. They act
on containers and provide means for various operations for the contents of the containers.

= Algorithm
= Sorting
= Searching

= |mportant STL Algorithms
= Useful Array algorithms

= Partition Operations
= Numeric

= valarray class

Containers

Containers or container classes store objects and data. There are in total seven standard “first-class” container
classes andthreecontainer adaptor classes and only seven header files that provide access to these containers or

Department of Mechatronics Engineering, NCERC, Pampady. 229

https://www.geeksforgeeks.org/template-specialization-c/
http://quiz.geeksforgeeks.org/sort-algorithms-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/binary-search-algorithms-the-c-standard-template-library-stl/
https://www.geeksforgeeks.org/c-magicians-stl-algorithms/
https://www.geeksforgeeks.org/useful-array-algorithms-in-c-stl/
https://www.geeksforgeeks.org/stdpartition-in-c-stl/

MRT 363 : OBJECT ORIENTED PROGRAMMING

container adaptors.

= Sequence Containers: implement data structures which can be accessed in a sequential manner.

= yector
= list

= deque
=__arrays

= forward list(Introduced in C++11)

= Container Adaptors : provide a different interface for sequential containers.

=___Jueue
= priority queue
= stack
» __Associative Containers : implement sorted data structures that can be quickly searched (O(log
n) complexity).
= set
= multiset
=__map
= __multimap

Functions
The STL includes classes that overload the function call operator. Instances of such classes are called function
objects or functors. Functors allow the working of the associated function to be customized with the help of
parameters to be passed.

= Functors
lterators
As the name suggests, iterators are used for working upon a sequence of values. They are the major feature that
allow generality in STL.

= |terators
Utility Library
Defined under <utility header>
= air
Or

Hope you have already understood the concept of C++ Template which we have discussed earlier. The C++
STL (Standard Template Library) is a powerful set of C++ template classes to provide general-purpose
classes and functions with templates that implement many popular and commonly used algorithms and data

structures like vectors, lists, queues, and stacks.

Department of Mechatronics Engineering, NCERC, Pampady. 230

http://quiz.geeksforgeeks.org/vector-sequence-containers-the-c-standard-template-library-stl-set-1/
http://quiz.geeksforgeeks.org/list-sequence-containers-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/deque-sequence-containers-the-c-standard-template-library-stl/
https://www.geeksforgeeks.org/array-class-c/
https://www.geeksforgeeks.org/forward-list-c-set-1-introduction-important-functions/
http://quiz.geeksforgeeks.org/queue-container-adaptors-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/priority-queue-container-adaptors-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/stack-container-adaptors-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/set-associative-containers-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/multiset-associative-containers-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/map-associative-containers-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/multimap-associative-containers-the-c-standard-template-library-stl/
https://www.geeksforgeeks.org/functors-in-cpp/
https://www.geeksforgeeks.org/iterators-c-stl/
http://quiz.geeksforgeeks.org/pair-simple-containers-the-c-standard-template-library-stl/

MRT 363 : OBJECT ORIENTED PROGRAMMING

At the core of the C++ Standard Template Library are following three well-structured components —

Sr.No Component & Description

Containers

Containers are used to manage collections of objects of a certain kind. There are
several different types of containers like deque, list, vector, map etc.

Algorithms

Algorithms act on containers. They provide the means by which you will perform
initialization, sorting, searching, and transforming of the contents of containers.

Iterators

Iterators are used to step through the elements of collections of objects. These
collections may be containers or subsets of containers.

We will discuss about all the three C++ STL components in next chapter while discussing C++ Standard
Library. For now, keep in mind that all the three components have a rich set of pre-defined functions which

help us in doing complicated tasks in very easy fashion.

Let us take the following program that demonstrates the vector container (a C++ Standard Template) which is
similar to an array with an exception that it automatically handles its own storage requirements in case it

grows —

#include <iostream>
#include <vector>
using namespace std;

intmain() {

/l create a vectorto store int

Department of Mechatronics Engineering, NCERC, Pampady. 231

http://tpcg.io/pZCBjr

MRT 363 : OBJECT ORIENTED PROGRAMMING

vector<int>vec;

int i;

/I display the original size of vec

cout <<"vectorsize =" << vec.size() <<endl;

/I push 5values intothe vector
for(i=0;i<5;i++) {

vec.push_back(i);

/I display extendedsize of vec

cout <<"extended vectorsize =" << vec.size() << endl;

[/l access5values fromthe vector
for(i=0;i<5;i++) {

cout<<"value ofvec [" <<i<<"] =" << vec]i] << endl;

Il use iteratorto access the values
vector<int>:iterator v =vec.begin();
while(v !=vec.end()) {

cout<<"value ofv="<<*v <<endl,

VA

return 0;

Department of Mechatronics Engineering, NCERC, Pampady.

232

MRT 363 : OBJECT ORIENTED PROGRAMMING

When the above code is compiled and executed, it produces the following result —

vectorsize=0
extendedvectorsize =5
value of vec [0] =0
value of vec [1] =1
value of vec [2] = 2
value of vec [3] =3
value of vec [4] =4
value ofv =0
value ofv =1
value of v =2
value ofv =3
value of v =4

Here are following points to be noted related to various functions we used in the above example —
e The push_back() member function inserts value atthe end of the vector, expanding its size as needed.
e The size() function displays the size of the vector.
e The function begin() returns an iterator to the start of the vector.

e The function end() returns an iterator to the end of the vector.

Completed.........

Department of Mechatronics Engineering, NCERC, Pampady. 233

MRT 363 : OBJECT ORIENTED PROGRAMMING

APPENDIX
CONTENT BEYOND THE SYLLABUS

C++ Signal Handling

o Signals are the interrupts which are delivered to a process by the operating systemto stop its ongoing

taskand attend the task for which the interrupt has been generated.

o Signals can also be generated by the operating systemon the basis of systemor error condition.

o You can generate interrupts by pressing Ctrl+ C on Linux, UNIX, Mac OS X, or Windows system.

There are signals which cannot be caught by the program but there is a following list of signals which you can
catchin your program and can take appropriate actions based on the signal.

Thesesignals are defined in <csingnal> header file.

Here are the list of signals along with their description and working capability:

Signals Description

SIGABRT (Signal Abort) Abnormal termination of the program, such
asa call toabort.

SIGFPE (Signal floating- point exception) An erroneous arithmetic operation,
such as a divide by zero or an operation resulting in overflow.

SIGILL (Signal Illegal Instruction) It is used for detecting an illegal instruction.

SIGINT (Signal Interrupt) It is used to receipt an interactive program
interrupt signal.

SIGSEGV (Signal segmentation Violation) Aninvalid access to storage.

Department of Mechatronics Engineering, NCERC, Pampady. 234

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/linux-tutorial
https://www.javatpoint.com/os-tutorial

MRT 363 : OBJECT ORIENTED PROGRAMMING

SIGTERM (Signal Termination) A termination request sentto the program.

SIGHUP (Signal Hang up) Hang Up (POSIX), its reportthat user's terminal is
disconnected. It is used to report the termination of the
controlling process.

SIGQUIT Used to terminate a process and generate a core dump.

SIGTRAP Trace trap.

SIGBUS This is a BUS error which indicates an access to an invalid address.

SIGUSR1 User defined signal 1.

SIGUSR2 User defined signal 2.

SIGALRM Alarm clock, which indicates an access to aninvalid address.

SIGTERM Used for termination. This signalcan be blocked, handled, and ignored.
Generated by kill command.

SIGCOUNT This signalsentto process to make it continue.

SIGSTOP Stop, unblockable. This signal is used to stop aprocess.

This signalcannot be handled, ignored or blocked.

The signal() Function

Department of Mechatronics Engineering, NCERC, Pampady. 235

MRT 363 : OBJECT ORIENTED PROGRAMMING

C++ signal-handling library provides function signalto trap unexpected interrupts or events.

Syntax

wid (*signal (int sig, woid (*func)(int)))(int);
Parameters

This function is setto handle the signal.

It specifies a way to handle the signals number specified by sig.

Parameter func specifies one of the three ways in which a signal can be handled by a program.

o Default handling (SIG_DFL): Thesignal handled by the default action for that particular signal.

o lIgnore Signal (SIG_IGN): The signalis ignored and the code execution will continue even if not

purposeful.

o Function handler: A particular function is defined to handle the signal.

We must keep in mind that the signal that we would like to catch must be registered using asignal function
and it must be associated with a signal handling function.

Note: The signal handling function should be of the void type.

Return value

The return type of this function is the same as the type of parameter func.

If the request of this function is successful, the function returns a pointerto the particular handler function
which was in charge of handling this signal before the call, if any.

Data Races

Data race is undefined. If you call this function in a multi- threaded programthen it will cause undefined
behavior.

Exceptions

This function never throws exception.

Example 1

Department of Mechatronics Engineering, NCERC, Pampady. 236

https://www.javatpoint.com/cpp-tutorial

© © N o g M~ w DN P

N NN NN PR R R R R R R R
A WM PO © 0o N o g A~ w Db Ee o

MRT 363 : OBJECT ORIENTED PROGRAMMING

Let's seea simple example to demonstrate the use of signal() function:

#include <iostream>

#include <csignal>
using namespace std;
sig_atomic_tsignalled =0;

wid handler(int sig)

{
signalled = 1;

int main()
{
signal(SIGINT, handler);

raise(SIGINT);
if (signalled)

cout << "Signal is handled";
else

cout << "Signal is not handled";

return O;

}
Output:
Signalis handled

Example 2

Let's see anothersimple example:

#include <csignal>

#include <iostream>

Department of Mechatronics Engineering, NCERC, Pampady.

237

© © N o g M~ »

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

MRT 363 : OBJECT ORIENTED PROGRAMMING

namespace

{

wlatile std::sig_atomic_tgSignalStatus;

}

wid signal_handler(int signal)

{
gSignalStatus = signal;

}

int main()
{

/I'Install a signal handler
std::signal(SIGINT, signal_handler);

std::cout << "SignalValue: " << gSignalStatus << '\n";
std::cout << "Sending signal” << SIGINT << \n’;
std:raise(SIGINT);

std::cout << "SignalValue: " << gSignalStatus << \n";

}
Output:

SignalValue: 0
Sending signal 2
SignalValue: 2

The raise() Function

The C++ signalraise() function is used to send signals to the current executing program.

<csignal> headerfile declared the function raise() to handle a particular signal.

Syntax

int raise (int sig);

Department of Mechatronics Engineering, NCERC, Pampady.

238

© © N o g &~ w DN P

MRT 363 : OBJECT ORIENTED PROGRAMMING

Parameters

sig: The signalnumber to be sent for handling. It can take one of the following values:

o SIGINT

o SIGABRT
o SIGFPE

o SIGILL

o SIGSEGV
o SIGTERM
o SIGHUP

Return value

On success, itreturns 0 and on failure, a non-zero is returned.

Data Races

Concurrently calling this function is safe, causing no dataraces.

Exceptions

This function neverthrows exceptions, if no function handlers have been defined with signalto handle the
raised signal.

Example 1

Let's seea simple example to illustrate the use of raise() function when SIGABRT is passed:

#include <iostream>

#include <csignal>
using namespace std;
sig_atomic_tsig_value=0;

wid handler(int sig)
{

Department of Mechatronics Engineering, NCERC, Pampady. 239

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

© © N o g k~ w D B

=
= o

MRT 363 : OBJECT ORIENTED PROGRAMMING

sig_value =sig;

int main()

{
signal(SIGABRT, handler);
cout << "Before signal handler is called" << endl;
cout<< "Signal =" << sig_value <<end];
raise(SIGABRT);
cout << "Aftersignal handler is called" << endl;

cout << "Signal =" << sig_value <<end];

return O;

}
Output:

Before signalhandler s called
Signal=0

Aftersignal handleris called
Signal=6

Example 2

Let's seea simple example to illustrate the use of raise() function when SIGINT is passed:

#include <csignal>
#include <iostream>

using namespace std;

sig_atomic_ts_value=0;
wid handle(int signal_)

{

s_value =signal_;

. int main()

Department of Mechatronics Engineering, NCERC, Pampady.

240

12.
13.
14.
15.
16.
17.
18.

© © N o gk~ w D P

[N
©

11.
12.
13.
14.
15.
16.
17.
18.

MRT 363 : OBJECT ORIENTED PROGRAMMING

signal(SIGINT, handle);

cout << "Before called Signal =" <<'s_value << end];
raise(SIGINT);

cout << "Aftercalled Signal =" << s_value << end];

return O;

}
Output:

Before called Signal=0
After called Signal =2

Example 3

Let's seea simple example to illustrate the use of raise() function when SIGTERM is passed:

#include <csignal>
#include <iostream>

using namespace std;

sig_atomic_ts_value=0;
wid handle(int signal_)

{

s_value =signal_;

int main()
{
signal(SIGTERM, handle);
cout << "Before called Signal =" <<'s_value << end];
raise(SIGTERM);
cout << "Aftercalled Signal =" <<'s_value << end];

return O;

Department of Mechatronics Engineering, NCERC, Pampady.

241

© © N o g M~ w N P

e e e e O i o =
© N o o~ w DD = O

MRT 363 : OBJECT ORIENTED PROGRAMMING

Output:

Before called Signal=0
Aftercalled Signal = 15

Example 4

Let's seea simple example to illustrate the use of raise() function when SIGSEGV is passed:

#include <csignal>
#include <iostream>

using namespace std;

sig_atomic_ts_value=0;
wid handle(int signal_)

{

s_value =signal_;

. int main()

-

signal(SIGSEGV, handle);

cout << "Before called Signal =" <<'s_value << end];
raise(SIGSEGV);

cout << "Aftercalled Signal = " <<'s_value << endl;

return O;

}
Output:

Before called Signal=0
Aftercalled Signal =11

Example 5

Let's seea simple example to illustrate the use of raise() function when SIGFPE is passed:

#include <csignal>

#include <iostream>

Department of Mechatronics Engineering, NCERC, Pampady.

242

© © N o g M~ »

11.
12.
13.
14.
15.
16.
17.
18.

MRT 363 : OBJECT ORIENTED PROGRAMMING

using namespace std;

sig_atomic_ts_value=0;
wid handle(int signal_)

{

s_value =signal_;

int main()
{
signal(SIGFPE, handle);
cout << "Before called Signal =" << s_value << endl;
raise(SIGFPE);
cout << "Aftercalled Signal =" << s_value << end];

return O;

}
Output:

Before called Signal=0
Aftercalled Signal=8

2 . Multidimensional Arrays in C / C++

Array- Basics
In C/C++, we can define multidimensional arrays in simple words as array of arrays.
Data in multidimensional arrays are stored in tabular form (in row major order).

General form of declaring N-dimensional arrays:

data_type array name[sizel][size2]....[sizeN];

data_type: Type of data to be stored in the array.
Here data_type is valid C/C++ data type

array_name: Name of the array

sizel, size?2,... ,sizeN: Sizes of the dimensions

Examples:

Two dimensional array:

Department of Mechatronics Engineering, NCERC, Pampady.

243

https://www.geeksforgeeks.org/arrays-in-c-language-set-1-introduction/

MRT 363 : OBJECT ORIENTED PROGRAMMING

int two_d[10][20];

Three dimensional array:
int three_d[10][20][30];

Size of multidimensional arrays

Total number of elements that can be stored in a multidimensional array can be calculated
by multiplying the size of all the dimensions.

For example:

The array int x[10][20] can store total (10*20) = 200 elements.

Similarly array int x[5][10][20] can store total (5*10*20) = 1000 elements.

Two-Dimensional Array

Two — dimensional array is the simplest form of a multidimensional array. We can see a
two — dimensional array as an array of one — dimensional array for easier understanding.

The basic form of declaring a two-dimensional array of size x, v:
Syntax:

data_type array_name|[x][y];

data_type: Type of data to be stored. Valid C/C++ data type.

We can declare a two dimensional integer array say ‘X’ of size 10,20 as:
int x[10][20];

Elements in two-dimensional arrays are commonly referred by X[i][j] where i is the
row number and ‘j’ is the column number.

A two — dimensional array can be seen as a table with ‘x’ rows and ‘y’ columns where
the row number ranges from 0to (x-1) and column number ranges from 0 to (y-1). A
two — dimensional array ‘x” with 3 rows and 3 columns is shown below:

Column0 Column1 Column 2
Row 0 x[0][0] | x[O1[1] | xI[O][2]
Row 1 x[1][0] | x[11[1] | xI[1][2]
Row 2 x[2][0] | x[2][1] | xI2][2]

Initializing Two — Dimensional Arrays: There are two ways in which a Two-
Dimensional array can be initialized.

Department of Mechatronics Engineering, NCERC, Pampady. 244

https://media.geeksforgeeks.org/wp-content/uploads/two-d.png

MRT 363 : OBJECT ORIENTED PROGRAMMING

First Method:
int x[3][4] ={0,1234,5,6,7,8,9,10, 11}

The above array have 3 rows and 4 columns. The elements in the braces from left to right
are stored in the table also from left to right. The elements will be filled in the array in the
order, first 4 elements from the left in first row, next 4 elements in second row and so on.

Better Method:
int x[3][4] ={{0,1,23}, {4,56,7}, {89,10,11}};

This type of initialization make use of nested braces. Each set of inner braces represents
one row. In the above example there are total three rows so there are three sets of inner
braces.

Accessing Elements of Two-Dimensional Arrays: Elements in Two-Dimensional
arrays are accessed using the row indexes and column indexes.
Example:

int x[2][1];
The above example represents the element present in third row and second column.

Note: In arrays if size of array is N. Its index will be from O to N-1. Therefore, for row
index 2 row number is 2+1 = 3.

To output all the elements of a Two-Dimensional array we can use nested for loops. We
will require two for loops. One to traverse the rows and another to traverse columns.

filter _none

edit
play arrow
brightness_4

Department of Mechatronics Engineering, NCERC, Pampady. 245

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I C++ Programto print the elements ofa

/ Two-Dimensional array

#include<iostream>

using namespace std;

int main()

/l'an array with 3 rows and 2 columns.

int X3][2] = {{0,1}, {23}, {4.5}};

/I output each array element's value

for(inti=0;i<3;i++)

for(int j=0;j <2; j++)

cout<<"Elementat X" <<i

<"|["<<j<<"]: "

cout << ¥i][jl<<endl;

Department of Mechatronics Engineering, NCERC, Pampady. 246

MRT 363 : OBJECT ORIENTED PROGRAMMING

return O;

Output:

Element at x[0][0]:
Element at x[0][1]:
Element at x[1][0]:
Element at x[1][1]:
Element at x[2][0]:
Element at x[2][1]:

Row 1

Row 2

Rows
L

Row 3

Three-Dimensional Array

Columns

A

(

Column 1 Column 2 Column 3

1

111 112 113

o 211
2=
231

Array 3

212 213
311 312 313
321 322 323
331 332 333

Initializing Three-Dimensional Array: Initialization in Three-Dimensional array is
same as that of Two-dimensional arrays. The difference is as the number of dimension

Department of Mechatronics Engineering, NCERC, Pampady.

247

MRT 363 : OBJECT ORIENTED PROGRAMMING

increases so the number of nested braces will also increase.

Method 1:
int x[2][3][4] = {0, 1, 2, 3, 4,5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23},

Better Method:
int x[2][3][4] =

{
{{01,23}, {4567}, {8910,11} },
{{12,1314,15}, {16,17,18,19}, {20,21,22,23} }
jo
Accessing elements in Three-Dimensional Arrays: Accessing elements in Three-
Dimensional Arrays is also similar to that of Two-Dimensional Arrays. The difference is

we have to use three loops instead of two loops for one additional dimension in Three-
dimensional Arrays.

filter_none

edit
play arrow
brightness 4

Department of Mechatronics Engineering, NCERC, Pampady. 248

MRT 363 : OBJECT ORIENTED PROGRAMMING

/I C++ programto print elements of Three-Dimensional

Il Array

#include<iostream>

using namespace std;

int main()

/l'initializing the 3-dimensional array

int X{2][3][2] =

{{0.1}, {23}, {45} },

{4673, {8.9}, {1011} }

/I output each element's value

for (inti=0;i<2;++)

for (int j=0;j <3; ++j)

Department of Mechatronics Engineering, NCERC, Pampady. 249

MRT 363 : OBJECT ORIENTED PROGRAMMING

for (int k =0; k< 2; ++Kk)

cout<<"Elementatx" << i<<"][" <<]j
<" <<k <<"]=" << X[k

<<endl;

return 0;

Output:

Element at x[0][0][0] =0
Element at x[0][0][1] =1
Element at x[0][1][0] =2
Element at x[0][1][1] =3
Element at x[0][2][0] =4
Element at x[0][2][1] =5
Element at x[1][0][0] =6
Element at x[1][0][1] =7
Element at x[1][1][0] =8
Element at x[1][1][1] =9
Element at x[1][2][0] = 10

Department of Mechatronics Engineering, NCERC, Pampady.

250

MRT 363 : OBJECT ORIENTED PROGRAMMING

Element atx[1][2][1] =11

In similar ways, we can create arrays with any number of dimension. However the
complexity also increases as the number of dimension increases.
The most used multidimensional array is the Two-Dimensional Array.

3 Setting up C++ Development Environment

C++ is a general-purpose programming language and widely used nowadays for
competitive programming. It has imperative, object-oriented and generic programming
features.

C++ runs on lots of platform like Windows, Linux, Unix, Mac, etc. Before we start
programming with C++. We will need an environment to be set-up on our local computer
to compile and run our C++ programs successfully. If you do not want to set up a local
environment you can also use online IDEs for compiling your program.

Using online IDE: IDE stands for integrated development environment. IDE is a
software application that provides facilities to a computer programmer for developing
software. There are many online IDEs available which you can use to compile and run
your programs easily without setting up a local development environment.

#include<iostream>
using namespace std;

main()
cout <<"Learning C++at GeekforGeeks";
Setting up local environment

For setting up your own personal development environment on your local machine you
need to install two important softwares:

Department of Mechatronics Engineering, NCERC, Pampady. 251

MRT 363 : OBJECT ORIENTED PROGRAMMING

1. Text Editor: Text Editors are type of programs used to edit or write texts. We will
use text-editors to type our C++ programs. The normal extension of a text file is (.txt)
but a text file containing C++ program should be saved with *.CPP’ or *.C’ extension.
Files ending with the extension ‘.CPP’ and ‘.C’ are called source code files and they
are supposed to contain source code written in C++ programming language. These
extension helps the compiler to identify that the file contains a C++ program.

Before beginning programming with C++, one must have a text-editor installed to

write programs.

2. C++ Compiler: Once you have installed text-editor and typed and save your program
m afile with ‘.CPP’ extension, you will need a C++ compiler to compile this file. A
compiler is a computer program which converts high-level language into machine
understandable low-level language. In other words, we can say that it converts the
source code written in a programming language into another computer language
which the computer understands. For compiling a C++ program we will need a C++
compiler which will convert the source code written in C++ into machine codes.
Below are the details about setting up compiler on different platforms.

e Linux Installation: We will install the GNU GCC compiler on Linux. To install
and work with the GCC compiler on your Linux machine, proceed according to
below steps:

e You have to first run the below two commands from your Linux
terminal window:
e sudo apt-get update

e sudo apt-get install GCC

This command will install the GCC compiler on your system. You may
also run the below command:

sudo apt-get install build-essential

This command will install all the libraries which are required to compile
and run a C++ program.

e After completing the above step, you should check whether the GCC
compiler is installed in your system correctly or not. To do this you

have to run the below-given command from Linux terminal:
e g+t --version

e If you have completed the above two steps without any errors, then your
Linux environment is set up and ready to be used to compile C++
programs. In further steps, we will learn how to compile and run a C++

Department of Mechatronics Engineering, NCERC, Pampady. 252

MRT 363 : OBJECT ORIENTED PROGRAMMING

program on Linux using GCC compiler.

o Write your program in a text file and save it with any file name and.CPP
extension. We have written a program to display “Hello World” and
saved it in a file with the filename ‘“helloworld.cpp” on desktop.

e Now you have to open the Linux terminal and move to the directory
where you have saved your file. Then you have to run the below
command to compile your file:

e g++ filename.cpp -0 any-name
filename.cpp is the name of your source code file. In our case, the name
is “helloworld.cpp” and any-name can be any name of your choice. This
name will be assigned to the executable file which is created by the
compiler after compilation. In our case, we choose any-name to be
“hello”.

We will run the above command as:
g++ helloworld.cpp -o hello

o After executing the above command, you will see a new file is created
automatically in the same directory where you have saved the source
file and the name of this file is the name you chose as any-name.
Now to run your program you have to run the below command:

e ./hello

This command will run your program in the terminal window.

e Windows Installation: There are lots of IDE available for windows operating
system which you can use to work easily with C++ programming language. One
of the popular IDE is Code::Blocks. To download Code:Blocks you may
visit this link. Once you have downloaded the setup file of Code:Blocks from the
given link open it and follow the instruction to install.

o After successfully installing Code:Blocks, go to File menu ->
Select New and create an Empty file.

o Now write your C++ program in this empty file and save the file with a
‘.cpp’ extension.

o After saving the file with ‘.cpp’ extension, go to Build menu and choose
the Build and Run option.

e« Mac OS X Installation: If you are a Mac user,you have to download Xcode. To
download Xcode you have to visit the apple website or you can search it on apple
app store. You may follow the link developer.apple.com/technologies/tools/ to
download Xcode. You will find all the necessary install instructions there.

o Atfter successfully installing Xcode, open the Xcode application.

e To create a new project. Go to File menu ->select New -> select
Project. This will create a new project for you.

e Now in the next window you have to choose a template for your project.
To choose a C++ template choose Application option which is under

Department of Mechatronics Engineering, NCERC, Pampady. 253

http://www.codeblocks.org/downloads/26
https://www.geeksforgeeks.org/setting-c-development-environment/developer.apple.com/technologies/tools/

MRT 363 : OBJECT ORIENTED PROGRAMMING

the OS X section on the left side bar. Now choose command-line
tools from available options and hit Next button.

e On the next window provide all the necessary details lke ‘name of
organisation’, ‘Product Name’ etc. But make sure to choose the

language as C++ . After filling the details hit the next button to proceed
to further steps.

o Choose the location where you want to save your project. After this
choose the main.cpp file from the directory list on the left side-bar.

o Now after opening the main.cpp file, you will see a pre written c++
program or template is provided. You may change this program as per
your requirement. To run your C++ program you have to go
to Product menu and choose the Run option from the dropdown.

Department of Mechatronics Engineering, NCERC, Pampady. 254

